• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers reveal how PIF proteins regulate cytokinesis

Bioengineer by Bioengineer
May 11, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: WANG Lei

To protect their newly formed fragile organs, dark-grown dicotyledonous plants form an apical hook when penetrating through the soil. The apical hook of pifq (pif1 pif3 pif4 pif5) mutant was fully opened, even in complete darkness, suggesting that PIF proteins are required for maintaining the apical hook in the darkness and are involved in regulation of the apical hook opening. But the underlying mechanism for PIF proteins mediated apical hook development remains elusive.

To better understand how PIF proteins affect apical hook development, scientists from the Institute of Botany of the Chinese Academy of Sciences recently investigated their roles in an organ specific manner. The study was published in the journal Cell Reports on May 11.

The researchers performed organ-specific RNA-sequencing of the cotyledons, apical hooks and hypocotyls of etiolated Col-0 and pifq mutant seedlings, respectively. Interestingly, the scientists found that the genes involved in the regulation of cell cycle were significantly enriched in differentially expressed genes (DEGs) of the cotyledons and apical hooks, but not in DEGs of the hypocotyls.

Transcriptomic analysis combined with previous ChIP-seq data reveal that BUB3.1 is a potential common target gene of PIF proteins. Indeed, the researchers demonstrated that PIF proteins directly bind to the promoter BUB3.1 and inhibit its transcription. Importantly, BUB3.1 overexpression in transgenic lines leads to a partial apical hook opening phenotype, indicating that the higher level of BUB3.1 in pifq mutant at least in part contributed to its apical hookless phenotype.

Previously, BUB3.1 was shown to majorly function in microtubule reorganization during cytokinesis through facilitating MAP65-3 to localize in the phragmoplast. Consistently, the phragmoplast could be clearly observed in dark-grown pifq and Col-0 etiolated seedlings exposed to light for only 6 hours, but not in the etiolated Col-0 seedlings. In addition, the researchers also showed that cell ploidy for cotyledons and apical hooks of pifq mutants is significantly lower than for the wild type. However, cell ploidy in the hypocotyl is not significantly different regardless of type, indicating that PIF proteins can regulate cytokinesis in an organ specific manner such as in the apical hook or cotyledons.

To further investigate the role of cytokinesis in the apical hook opening, the researchers applied caffeine, a well-known potent inhibitor of phragmoplast-based cytokinesis, to the wild type etiolated seedlings. Evidently, the researchers found that caffeine treatment significantly promotes the hook curvature of wild-type etiolated seedlings, suggesting cytokinesis might be involved into the apical hook development.

Altogether, this study reveals that PIF proteins can regulate cytokinesis in the apical hook and cytokinesis may affect the development of the apical hook. Hence, their work demonstate that PIF proteins may play organ-specific roles, in hypocotyl to regulate cell elongation, while in apical hook and cotyledons to regulate cell division.

###

Media Contact
WANG Lei
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.celrep.2021.109095

Tags: BiologyFood/Food ScienceGenesGeneticsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Proximity Labeling Reveals EFCAB5 Regulates Sperm Motility

September 10, 2025

New JNCCN Study Introduces Simplified Method to Detect Harmful Medications in Older Cancer Patients

September 10, 2025

Government Benefits Overlook NICU Poverty Solutions

September 10, 2025

Comprehensive Study Assesses Cancer Diagnosis Pathway for Patients Presenting Non-Specific Symptoms

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    56 shares
    Share 22 Tweet 14
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Proximity Labeling Reveals EFCAB5 Regulates Sperm Motility

New JNCCN Study Introduces Simplified Method to Detect Harmful Medications in Older Cancer Patients

Government Benefits Overlook NICU Poverty Solutions

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.