• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers reveal how PIF proteins regulate cytokinesis

Bioengineer by Bioengineer
May 11, 2021
in Science News
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: WANG Lei

To protect their newly formed fragile organs, dark-grown dicotyledonous plants form an apical hook when penetrating through the soil. The apical hook of pifq (pif1 pif3 pif4 pif5) mutant was fully opened, even in complete darkness, suggesting that PIF proteins are required for maintaining the apical hook in the darkness and are involved in regulation of the apical hook opening. But the underlying mechanism for PIF proteins mediated apical hook development remains elusive.

To better understand how PIF proteins affect apical hook development, scientists from the Institute of Botany of the Chinese Academy of Sciences recently investigated their roles in an organ specific manner. The study was published in the journal Cell Reports on May 11.

The researchers performed organ-specific RNA-sequencing of the cotyledons, apical hooks and hypocotyls of etiolated Col-0 and pifq mutant seedlings, respectively. Interestingly, the scientists found that the genes involved in the regulation of cell cycle were significantly enriched in differentially expressed genes (DEGs) of the cotyledons and apical hooks, but not in DEGs of the hypocotyls.

Transcriptomic analysis combined with previous ChIP-seq data reveal that BUB3.1 is a potential common target gene of PIF proteins. Indeed, the researchers demonstrated that PIF proteins directly bind to the promoter BUB3.1 and inhibit its transcription. Importantly, BUB3.1 overexpression in transgenic lines leads to a partial apical hook opening phenotype, indicating that the higher level of BUB3.1 in pifq mutant at least in part contributed to its apical hookless phenotype.

Previously, BUB3.1 was shown to majorly function in microtubule reorganization during cytokinesis through facilitating MAP65-3 to localize in the phragmoplast. Consistently, the phragmoplast could be clearly observed in dark-grown pifq and Col-0 etiolated seedlings exposed to light for only 6 hours, but not in the etiolated Col-0 seedlings. In addition, the researchers also showed that cell ploidy for cotyledons and apical hooks of pifq mutants is significantly lower than for the wild type. However, cell ploidy in the hypocotyl is not significantly different regardless of type, indicating that PIF proteins can regulate cytokinesis in an organ specific manner such as in the apical hook or cotyledons.

To further investigate the role of cytokinesis in the apical hook opening, the researchers applied caffeine, a well-known potent inhibitor of phragmoplast-based cytokinesis, to the wild type etiolated seedlings. Evidently, the researchers found that caffeine treatment significantly promotes the hook curvature of wild-type etiolated seedlings, suggesting cytokinesis might be involved into the apical hook development.

Altogether, this study reveals that PIF proteins can regulate cytokinesis in the apical hook and cytokinesis may affect the development of the apical hook. Hence, their work demonstate that PIF proteins may play organ-specific roles, in hypocotyl to regulate cell elongation, while in apical hook and cotyledons to regulate cell division.

###

Media Contact
WANG Lei
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.celrep.2021.109095

Tags: BiologyFood/Food ScienceGenesGeneticsPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Multi-Proteomic Analysis Reveals Host Risks in VZV

Multi-Proteomic Analysis Reveals Host Risks in VZV

July 30, 2025
Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

July 29, 2025

Cracking the Code of Cancer Drug Resistance

July 29, 2025

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

July 29, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    57 shares
    Share 23 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Multi-Proteomic Analysis Reveals Host Risks in VZV

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Cracking the Code of Cancer Drug Resistance

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.