• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers refute textbook knowledge in molecular interactions

Bioengineer by Bioengineer
June 29, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Van der Waals interactions between molecules are among the most important forces in biology, physics, and chemistry, as they determine the properties and physical behavior of many materials. For a long time, it was considered that these interactions between molecules are always attractive. Now, for the first time, Mainak Sadhukhan and Alexandre Tkatchenko from the Physics and Materials Science Research Unit at the University of Luxembourg found that in many rather common situations in nature the van der Waals force between two molecules becomes repulsive. This might lead to a paradigm shift in molecular interactions.

"The textbooks so far assumed that the forces are solely attractive. For us, the interesting question is whether you can also make them repulsive," Prof Tkatchenko explains. "Until recently, there was no evidence in scientific literature that van der Waals forces could also be repelling." Now, the researchers have shown in their paper, published in the renowned scientific journal Physical Review Letters, that the forces are, in fact, repulsive when they take place under confinement.

The ubiquitous van der Waals force was first explained by the German-American physicist Fritz London in 1930. Using quantum mechanics, he proved the purely attractive nature of the van der Waals force for any two molecules interacting in free space. "However, in nature molecules in most cases interact in confined spaces, such as cells, membranes, nanotubes, etc. In is this particular situation, van der Waals forces become repulsive at large distances between molecules," says Prof Tkatchenko.

Mainak Sadhukhan, the co-author of the study, developed a novel quantum-mechanical method that enabled them to model van der Waals forces in confinement. "We could rationalize many previous experimental results that remained unexplained until now. Our new theory allows, for the first time, for an interpretation of many interesting phenomena observed for molecules under confinement," Mainak Sadhukhan says.

The discovery could have many potential implications for the delivery of pharmaceutical molecules in cells, water desalination and transport, and self-assembly of molecular layers in photovoltaic devices.

Prof Tkatchenko's research group is working on methods that model the properties of a wide range of intermolecular interactions. Only in 2016, they found that the true nature of these van der Wals forces differs from conventional wisdom in chemistry and biology, as they have to be treated as coupling between waves rather than as mutual attraction (or repulsion) between particles.

###

Media Contact

Thomas Klein
[email protected]
352-466-644-5148
@uni_lu

http://www.uni.lu

http://dx.doi.org/10.1103/PhysRevLett.118.210402

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthroughs in Dynamic Biomacromolecular Modifications and Chemical Interventions: Insights from a Leading Chinese Chemical Biology Consortium

September 16, 2025
blank

New Theory Proposes Culture as a Key Driver of Major Human Evolutionary Shift

September 15, 2025

New Research Reveals Early “Inherence” Bias in the History of Science

September 15, 2025

NIH Awards $8.6 Million Grant to Renew Rare Disease Clinical Research Network for Neurodevelopmental Studies

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Shifts in Infective Endocarditis Demographics: 2012-2021

Assessing Disability: WHO vs. Daily Living Scales

Creating a Sulfur Vacancy Redox Disruptor for Innovative Therapies Targeting Cuproptosis, Ferroptosis, and Apoptosis through Photothermoelectric and Cascade Catalytic Mechanisms

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.