• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers propose MOF modular customization strategy for efficient membrane separations

Bioengineer by Bioengineer
November 14, 2023
in Chemistry
Reading Time: 2 mins read
0
Researchers propose MOF modular customization strategy for efficient membrane separations
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Membrane separation technology offers great potential due to its low energy consumption and continuous operation availability. Metal-organic frameworks (MOFs) are promising in separation membranes due to their abundant species, high porosity, and precise regulation of pore architectures.

Researchers propose MOF modular customization strategy for efficient membrane separations

Credit: DICP

Membrane separation technology offers great potential due to its low energy consumption and continuous operation availability. Metal-organic frameworks (MOFs) are promising in separation membranes due to their abundant species, high porosity, and precise regulation of pore architectures.

Recently, a research group led by Prof. YANG Weishen and Assoc. Prof. PENG Yuan from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) has proposed a new strategy of modular customization and non-destructive regulation of MOFs for efficient membrane separations.

This work was published in Angewandte Chemie International Edition on Oct. 16.

The researchers proposed a strategy to modularize custom defect-free MOF separation membranes. The membrane structure consisted of two parallel modules. One was a discrete MOF module based on the characteristics of heterogeneous mutually reinforcing nuclei, which led to the implementation of molecular mass transfer and separation by exploiting the intrinsic pore structure. The other was the highly cross-linked, ultra-low permeability polyamide module formed by the confined interface polymerization operation, which was responsible for the comprehensive blockade of defects between MOF modules.

Guided by this strategy, the MOF module could be randomly replaced to customize the corresponding MOF separation membrane, and high-performance MOF separation membranes could be rapidly produced. With the modified post-synthesis strategy, the MOF module skeleton in the membrane was controlled without loss and the separation accuracy was doubled.

The researchers selected four MOFs with different pore/channel sizes and functionalities for batch fabrication of defect-free MOF membranes. Each membrane fully displayed the separation potential according to the MOF pore size.

Among them, the NH2-Zn2Bim4 membrane exhibited a high H2/CO2 mixture separation factor of 1656 and H2 permeability of 964 gas permeation unit. Taking advantage of this strategy, the membrane performance could be further enhanced via application-oriented post-synthetic ligand exchange. The H2/CO2 selectivity of the regulated membrane was approximately 200% higher than that of the original membrane.

“This strategy provides a tractable route to customize a myriad of high-performance membranes to meet different separation requirements,” said Prof. YANG.



Journal

Angewandte Chemie International Edition

DOI

10.1002/anie.202315057

Method of Research

Commentary/editorial

Subject of Research

Not applicable

Article Title

Modular Customization and Regulation of Metal–Organic Frameworks for Efficient Membrane Separations

Article Publication Date

16-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

October 4, 2025
Building Larger Hydrocarbons for Optical Cycling

Building Larger Hydrocarbons for Optical Cycling

October 4, 2025

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Empowering Older Adults: Shared Decision-Making in Nursing

Whole Genome Analysis Uncovers Variations in Goat Pigmentation

Boosting Malonylation Site Detection with AlphaFold2

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.