• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers produced nitrogen doped bimodal cellular structure activated carbon

Bioengineer by Bioengineer
December 29, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cellular activated carbon, a new type of activated carbon we prepared, is based on carbon foams, the inner surfaces of which are activated physically by CO2 to generate an available surface made up of micro/mesopores. The carbon foams are enriched with macropores that are connected to the cell walls. After activation, the cellular activated carbon produces a great deal of micro and mesopores at the surface of the macropores; therefore, this new bimodal cellular activated carbon can be used just like the classic activated carbon as an adsorbent, catalyst support, energy storage and biological material in various industries.

But the most difference is the ACs are normally in the form of grains or are granular with surface areas mainly being controlled by their inner microporosity (pore size less than 2 nm) and mesoporosity (pore size ranging from 2 to 50 nm). The mesoporosity also plays a role in the pathways for reactants flowing through the carbon grains. When we using this carbon foam as a precursor provides pathways for the macropores, so the resulting features for the new cellular activated carbon are the monolithic shape and high adsorption kinetics due to the size of the bigger pores.

This research was supported in part by grants from the National Natural Science Foundation of China (31300488) and the Fujian Agriculture and Forestry University Fund for Distinguished Young Scholars (xjq201420).

Addition co-authors of the Nano paper are Lu LUO from Fujian Argricuture and Forestry University and Mizi Fan Brunel University.

Corresponding author for this study is Weigang ZHAO, [email protected]. The paper can be found in NANO.

###

Media Contact

LAW Sue Fan
[email protected]
65-646-65775
@worldscientific

http://www.worldscientific.com

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Tracking Ovarian Cancer Evolution via Cell-Free DNA

October 1, 2025

Machine Learning Radiomics Predicts Pancreatic Cancer Invasion

October 1, 2025

Vigabatrin’s Protective Effects Against Ovarian Injury

October 1, 2025

TyG Index Links to MASLD in Lean Young Adults

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    64 shares
    Share 26 Tweet 16
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    63 shares
    Share 25 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tracking Ovarian Cancer Evolution via Cell-Free DNA

Machine Learning Radiomics Predicts Pancreatic Cancer Invasion

Vigabatrin’s Protective Effects Against Ovarian Injury

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.