• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers pave the way to designing omnidirectional invisible materials

Bioengineer by Bioengineer
May 7, 2020
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team at UPV’s Nanophotonics Technology Center has discovered a new fundamental symmetry in electromagnetism, acoustics and elasticity laws: a temporal supersymmetry

IMAGE

Credit: UPV

According to Carlos García Meca and Andrés Macho Ortiz, researchers at NTC-UPV, this new symmetry allows the conservation of the linear moment between dramatically different physical systems. This paves the way to designing pioneering optical, acoustic and elastic devices, including invisible omnidirectional, polarization-independent materials, ultra-compact frequency shifters, isolators and pulse-shape transformers.

“These devices allow us to unusually modify different properties of light signals inside photonic circuits to process the spread of information. This is vital in communication systems. Moreover, we can adapt the functionality of those devices to the requirements at any time, as they are dynamically configurable,” explained Carlos García Meca.

For designing these new devices, the key lies in changing the refraction index, which in this case is not generated in space but in time. “The Supersymmetry technique tells us how to vary the refraction index of an object to have the light completely transmitted, avoiding undesired reflections,” said Andrés Macho Ortiz.

The property of non-reflection is particularly useful for designing new photonic circuits. “Its implementation allows us to increase the speed of communications inside and makes them more compact and configurable without the signal that transports information bits being reflected back,” explained Carlos and Andrés.

In general, the reflection of materials whose properties vary in time does not depend on the direction of light propagation. Therefore, “the absence of reflection in the proposed materials is linked to a total transparency, which results in the concept of omnidirectional invisibility: whatever the direction of light hitting those materials is, their presence is undetectable,” concluded the authors.

Symmetries

The discovery of symmetries in the nature is a cornerstone in physics that allows us to find the conservation laws governing the universe. For example, electric charge, energy and mass conservation (coming from symmetries in physical laws governing electromagnetism, thermodynamics and chemistry) has allowed humans to have the ability to develop this technology (circuits, nuclear power stations, drugs…).

Exceptionally, supersymmetry was originally conceived in quantum physics as a hypothetical symmetry between particles that could explain all interactions in nature: nuclear forces, gravity and electromagnetism.

###

Media Contact
Luis Zurano Conches
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-14634-0

Tags: Technology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

Bioactive Compounds from Paenibacillus Dendritiformis Show Antibacterial Effects

Bioactive Compounds from Paenibacillus Dendritiformis Show Antibacterial Effects

August 5, 2025
Heavy Episodic Drinking Among University Students Explained

Heavy Episodic Drinking Among University Students Explained

August 5, 2025

New Salmonella Vaccine Targets Coccidiosis in Poultry

August 5, 2025

Microplastics in Africa’s Land Ecosystems: Challenges & Collaboration

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    71 shares
    Share 28 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bioactive Compounds from Paenibacillus Dendritiformis Show Antibacterial Effects

Heavy Episodic Drinking Among University Students Explained

New Salmonella Vaccine Targets Coccidiosis in Poultry

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.