• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers obtain Bose-Einstein condensate with nickel chloride

Bioengineer by Bioengineer
April 3, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bose-Einstein condensates – often called the "fifth state of matter", the other four states being solids, liquids, gases and plasmas – are obtained when atoms are cooled almost to absolute zero. Under these conditions, the particles no longer have free energy to move relative to each other, and some of these particles, called bosons, fall into the same quantum states and cannot be distinguished from one another. At this point, the atoms start obeying what are known as Bose-Einstein statistics, which are usually applied to identical particles. In a Bose-Einstein condensate, the entire group of atoms behaves as though it were a single atom.

Bose-Einstein condensates were first predicted and theoretically calculated by Satyendra Nath Bose (1894-1974) and Albert Einstein (1879-1955) in 1924, but it was not until 1995 that Eric A. Cornell, Carl E. Wieman and Wolfgang Ketterle managed to produce one using ultracold rubidium gas, for which all three were awarded the 2001 Nobel Prize in Physics.

Research by an international collaboration recently produced the equivalent of a Bose-Einstein condensate using the chemical compound nickel chloride. More importantly, theoretical treatment of the data enabled the researchers to obtain a set of equations that can be applied to other materials that are not characterized as Bose-Einstein condensates.

Armando Paduan Filho, Full Professor at the University of São Paulo's Physics Institute (IF-USP) in Brazil, participated in the study. "At temperatures close to absolute zero and in the presence of a very intense magnetic field, nickel chloride behaves like a Bose-Einstein condensate, so that the properties of a large group of atoms can be described using a single equation, a single wave function," Paduan Filho told.

This discovery makes calculations possible that would otherwise be impracticable. For example, the magnetic moment of a macroscopic body can theoretically be calculated as the sum of the magnetic moments of its atoms, but in practice, this calculation is not feasible because of the huge numbers of atoms and interactions involved. "One way to solve the problem is to use the statistics of quantum mechanics. In this case, we have to think of atoms not as points or solids but as waves," Paduan Filho said.

In bosons, i.e., in materials that obey Bose-Einstein statistics, all waves associated with the particles of which they supposedly consist are equal. Meanwhile, the lower the temperature of a material, the longer the wavelengths of its constituent particles, and as the temperature of the material approaches absolute zero, the wavelengths increase until all of the waves overlap. "So we have a situation where all the waves are equal and overlapping, and we can therefore represent all of them as a single wave. Energy emissions and electrical, magnetic, thermal, luminous and other properties can be calculated by means of a single wave function," he explained.

When the researchers studied nickel chloride, they found that when the material was cooled almost to absolute zero and subjected to a strong magnetic field, its atoms behaved like bosons and it could therefore be characterized as a Bose-Einstein condensate. "The fact that the atoms can be perceived as waves is an experimental finding that corroborates the theory, whereas saying that they form a Bose-Einstein condensate comes from applying a theoretical instrument to explain the properties observed," he said.

Physicists at the University of São Paulo (USP) have been investigating the magnetic properties of nickel chloride for more than a decade. "In some materials, the magnetic moments of the atoms are disorderly at room temperature but orderly when the material is chilled. We discovered that this orderliness doesn't happen in nickel chloride, but at very low temperatures and in the presence of a high magnetic field, it exhibits an induced magnetic moment," Paduan Filho said.

The investigation proceeded through collaboration with several foreign institutions, such as the National High Magnetic Field Laboratory (NHMFL) in Los Alamos, USA, and the similarly named French facility in Grenoble (LNCMI), among others. These partnerships enabled the researchers to reach temperatures in the order of 1 millikelvin – one-thousandth of a degree above absolute zero – and to use techniques such as nuclear magnetic resonance (NMR) to study matter at the atomic and subatomic scales. This is how the researchers succeeded in characterizing ultracold nickel chloride as a Bose-Einstein condensate.

"Besides these experiments, our collaboration also produced consistent theoretical work, and we arrived at a set of equations that, with some transpositions, can be applied to other materials apart from condensates," Paduan Filho said. The use of these equations offers excellent prospects not only for basic research into the structure of matter but also for future technological applications, since a great many everyday devices operate on the basis of magnetic properties.

###

Media Contact

Samuel Antenor
[email protected]
55-113-838-4381
@AgencyFAPESP

http://www.fapesp.br

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Estimating Rice Canopy LAI Non-Destructively Across Varieties

September 14, 2025

How SARS-CoV-2 Spike Protein Activates TLR4

September 14, 2025

Boosting Xanthan Gum Production with Essential Oil By-products

September 13, 2025

Groundwater Pesticide Contamination: Challenges and Solutions

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Estimating Rice Canopy LAI Non-Destructively Across Varieties

How SARS-CoV-2 Spike Protein Activates TLR4

Boosting Xanthan Gum Production with Essential Oil By-products

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.