• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers look to immune cell shapes to predict how well body will fight lung cancers

Bioengineer by Bioengineer
September 20, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Case Western Reserve University

CLEVELAND–Researchers at Case Western Reserve University have discovered how to quickly and accurately predict which lung cancer patients will benefit from chemotherapy by analyzing how immune cells the body sends out to fight the disease are arranged.

The scientists–aided by smart-imaging computers and machine-learning methods–were able to swiftly analyze hundreds of tissue images to not only count cancer-associated immune cells–but identify patterns in how they were arranged.

That breakthrough view can now help determine which patients need chemotherapy or immunotherapy based on computational analysis of routine tissue-slide images obtained either by surgery or biopsy, said Anant Madabhushi, the F. Alex Nason Professor II of biomedical engineering at the Case School of Engineering.

"We believe we've made a critical advance to the field with this work," said Madabhushi, the lead among a dozen authors on a recent paper about the work in the journal Clinical Cancer Research. "Do you need chemo or not?–that's the direct benefit to the patient and what really matters."

While this published research focused on early-stage lung cancer tissue, further analysis also predicted the success of immunotherapy in late-stage lung cancer, Madabhushi said.

"That's why I'm super excited about this: It's a validation of what we call the 'spatial architecture' of the immune cells as predictive for the success of treatment for lung cancer," he said.

Simple tissue slides, complex cancer analysis

Oncologists and pathologists routinely take a tissue sample of cancer cells and then capture an image of that tissue. But the advent of deep-learning and machine-learning algorithms has allowed researchers to find patterns among the cells that would otherwise be nearly impossible for the human eye to detect. Most often, that means analyzing cancer cells themselves, or with limited success, counting the white blood cells–called tumor-infiltrating lymphocytes–which the body sends out to battle the cancer.

"One of the big problems is that cancer generally masks the immune response, which is why, to the body, cancer doesn't present as a foreign invader," Madabhushi said. "But it does evoke

For that reason, pathologists have been trying for the last 10 to 15 years to better understand how that immune response might correlate to how the cancer would spread or how the patient would respond to certain therapies–or whether the patient even needs the invasive and painful chemotherapy routinely give to virtually all cancer victims.

"But doing that manually is cumbersome, because there are hundreds of thousands of lymphocytes, and it's difficult to determine a pattern," Madabhushi said. "Our group has found a way to train the machine to find the lymphocytes and decipher their arrangement, their spatial architecture–and predict disease outcome."

###

Madabhushi was joined by Case Western Reserve colleagues Xiangxue Wang, Yu Zhou, and Cheng Lu from his Center for Computational Imaging and Personalized Diagnostics and Pingfu Fu from the Department of Population and Qualitative Health Sciences .

Other academic partners included: Germán Corredor and Eduardo Romero, from the National University of Colombia; Konstantinos Syrigos, from the University of Athens; David Rimm and Kurt Schalper, of the Yale University School of Medicine; pathologist Michael Yang, of University Hospitals Cleveland Medical Center; and thoracic oncologist Vamsidhar Velcheti, the Perlmutter Cancer Center at NYU Langone Medical Center.

Since 2016, Madabhushi and his team have received over $9.5 million from the National Cancer Institute to develop computational tools for analysis of digital pathology images of breast, lung and head and neck cancers to identify which patients with these diseases could be spared aggressive radiotherapy or chemotherapy.

Media Contact

Michael Scott
[email protected]
216-368-1004
@cwru

http://www.case.edu

Original Source

http://thedaily.case.edu/shaping-cancer-fight-smart-imaging-computers/

Share12Tweet7Share2ShareShareShare1

Related Posts

Advances in Asthma Therapeutics Unveiled

September 19, 2025

Persistent Cough Reveals Mysterious Endobronchial Mass

September 19, 2025

2025 Ig Nobel Prize Awarded for Perfecting the Science of Pasta Sauce

September 19, 2025

Uncovering Cancer Disparities Among Racial Groups

September 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advances in Asthma Therapeutics Unveiled

Persistent Cough Reveals Mysterious Endobronchial Mass

Unlocking Lignocellulose Breakdown: Microbial Enzyme Insights

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.