• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers link new protein to Parkinson’s

Bioengineer by Bioengineer
May 20, 2019
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Biochemistry shows how the protein MITOL kicks off Parkin activity

Researchers at Tokyo Metropolitan Institute of Medical Sciences are reporting new insight into how the Parkinson’s disease-associated protein Parkin selects its targets. Cells depend on Parkin to help get rid of damaged mitochondria. This new work, which appears in the Journal of Biological Chemistry on Monday, May 20, suggests that Parkin depends on other proteins, including one called MITOL that has not previously been linked to Parkinson’s disease, to direct it to those damaged mitochondria. The finding might help improve experimental therapies for Parkinson’s that aim to boost Parkin activity.

Parkin is attracted to damaged mitochondria, where it adds a degradation tag called ubiquitin to proteins on the mitochondrial surface. In some patients with familial Parkinson’s disease, Parkin activity is disrupted and bad mitochondria cannot be destroyed. Harmful byproducts from those bad mitochondria can damage neurons. By understanding how Parkin works and what goes wrong when it’s mutated, researchers hope to help patients with other forms of Parkinson’s disease, too.

While other ubiquitin tagging proteins, known as E3 ligases, recognize specific amino acid sequences on their substrates, Parkin has many known substrates that don’t seem to share a sequence in common. While studying how Parkin chooses its substrates, a group of scientists led by Fumika Koyano in Noriyuki Matsuda’s lab at the Tokyo Metropolitan Institute of Medical Science discovered that Parkin can tag any lysine-containing protein with ubiquitin — even a bacterial protein that is not ordinarily found in the cell — as long as it’s present at the surface of the mitochondria.

“Parkin is not regulated by its substrate specificity,” Koyano said of the finding. Instead, she added, control of Parkin activity comes from how it is recruited and activated by other proteins.

The discovery that activated Parkin is not terribly selective led Koyano and her colleagues to take a closer look at Parkin’s recruitment and activation. Some details of that process are well known; for example, a protein called PINK1 is known to boost Parkin activity. But Koyano and colleagues discovered a new step that has to happen before PINK1 can contribute to Parkin activation. They found that Parkin acts much more rapidly when a first ubiquitin molecule is already present, acting as a “seed” for addition of more ubiquitins. In most cases, the researchers found, this seed ubiquitin is added by a protein called MITOL, which has not previously been linked to Parkinson’s disease.

The research could help contribute to drug-design initiatives, some of which aim to boost Parkin activity to slow the advance of Parkinson’s disease. “If we achieve upregulation of ‘seed’ ubiquitylation on mitochondria,” Koyano said, “it might accelerate Parkin recruitment and Parkin activation to eliminate damaged mitochondria more efficiently.”

###

About the Journal of Biological Chemistry

JBC is a weekly peer-reviewed scientific journal that publishes research “motivated by biology, enabled by chemistry” across all areas of biochemistry and molecular biology. To read the latest research in JBC, visit http://www.jbc.org/.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 11,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in government laboratories, at nonprofit research institutions and in industry. The Society publishes three journals: the Journal of Biological Chemistry, the Journal of Lipid Research, and Molecular and Cellular Proteomics. For more information about ASBMB, visit http://www.asbmb.org.

Media Contact
Laurel Oldach
[email protected]

Tags: BiochemistryBiologyCell BiologyMolecular BiologyneurobiologyParkinson
Share12Tweet7Share2ShareShareShare1

Related Posts

Electroactive Ferrocene Enables Shuttle-Free Aqueous Zinc–Iodine Cells

Electroactive Ferrocene Enables Shuttle-Free Aqueous Zinc–Iodine Cells

November 6, 2025
Exploring 3D Chaotic Microcavities with X-Ray Vision

Exploring 3D Chaotic Microcavities with X-Ray Vision

November 6, 2025

MIT Physicists Uncover Crucial Evidence of Unconventional Superconductivity in Magic-Angle Graphene

November 6, 2025

UVA Engineering Polymer Scientist Honored with American Physical Society’s John H. Dillon Medal

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1301 shares
    Share 520 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Distinguished Cancer Researcher Stuart S. Martin, PhD, Appointed Chair of Pharmacology & Physiology at UM School of Medicine

Nurses’ Competence in Dementia Care: Current Insights

Ferroptosis in Diabetes: Insights from Research

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.