• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers learn more about maximizing brain use

Bioengineer by Bioengineer
September 18, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Neuroscientists from Higher School of Economics and Charité University Clinic in Berlin have come up with a new multivariate method for predicting behavioural response to a stimulus using information about the phase of preceding neuronal oscillations recorded with EEG. The method may eventually find practical application in fields such as competitive sports, education and patient treatment. The study's findings are published in the paper 'On optimal spatial filtering for the detection of phase coupling in multivariate neural recordings': https://www.ncbi.nlm.nih.gov/pubmed/28619653.

Even a resting human brain continuously generates complex patterns of neuronal oscillations which can be detected with EEG.

These oscillations occur at different frequencies — e.g. alpha at 10 Hz, beta at 20 Hz and theta at 7 Hz — and are registered by instruments as changes in the electric field generated by neurons in the brain. According to a popular hypothesis, one's ability to respond to various stimuli and process information depends on the amplitude and phase of neuronal oscillations at the moment a stimulus occurs.

"Imagine that someone needs to remember words presented to them. Interestingly, how well they can remember a particular word depends on the characteristics of the neuronal signal in their brain immediately preceding the moment they hear the word. As another example, Olympic 100-metre runners' time of response to the starting pistol can vary by tens of milliseconds, which is a fairly large spread given the importance of these milliseconds at the finishing line. Even the same athlete's reaction time can vary significantly, depending on the current state of their brain.

We tend to respond faster when our brain is in the optimal state for processing information and slower when it is not. In turn, the optimal state leading to fast responses is associated with specific parameters of neuronal oscillations," explains Vadim Nikulin, study co-author and leading research fellow at the HSE Centre for Cognition and Decision Making.

Scientists already know that a person's response to a stimulus depends on a variety of factors, including the phase of low-frequency oscillations in the brain at the time of the stimulus. But this time, the researchers have designed a new multi-dimensional method for maximising the relationship between the phase of neuronal oscillations and the subsequent behavioural response (e.g. reaction time to stimulus, memorisation of a sensory stimulus, etc.) They recorded human brain activity using 90 electrodes, and unlike earlier studies, analysed it taking into account the multidimensional distribution of neuronal oscillation parameters for a more accurate prediction of the reaction time.

The subjects were asked to respond to a tactile stimulus as soon as possible. A sensor attached to the index finger of their dominant hand recorded the muscular activity in response to a somatosensory stimulus applied to the index finger of the other hand. At the same time, an EEG was used to record their brain's neuronal oscillations which are always present but show wide variability over time. The authors showed that the reaction speed depended on the phase of the low-frequency (

According to the researchers, this new method can be useful for identifying the neuronal processes associated with optimal response to stimuli. In the practical aspect, this can be relevant to competitive sports and for clinical practice, e.g. by allowing medics to understand the pathological neuronal processes associated with Parkinson's disease causing patients to have problems with starting a movement. "Using more sensitive methods of neuronal signal extraction makes it possible to identify the phases of neuronal oscillations associated with maximum use of brain resources," according to Nikulin. "We can also imagine a not-so-distant future where students wearing comfortable caps fitted with EEG electrodes will be learning new words of a foreign language presented to them precisely at the moments of maximum susceptibility to such information."

Having tested the model on a motor paradigm, the researchers have recently entered a new phase of their study focusing on the perception of visual signals.

###

Media Contact

Liudmila Mezentseva
[email protected]
7-495-772-9567
@https://twitter.com/HSE_eng

http://www.hse.ru/en/

http://iq.hse.ru/en/news/208915942.html

Related Journal Article

http://dx.doi.org/10.1016/j.neuroimage.2017.06.025

Share12Tweet7Share2ShareShareShare1

Related Posts

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

AI Model Delivers Precise and Transparent Insights to Enhance Autism Assessments

September 19, 2025
blank

Collaboration with Kenya’s Turkana Community Uncovers Genes Behind Desert Adaptation

September 18, 2025

Cracking the Code of the Selfish Gene: From Evolutionary Cheaters to Breakthroughs in Disease Control

September 18, 2025

New Model Enables Precise Predictions of Forest Futures

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Uncovering Cancer Disparities Among Racial Groups

Bacillus PGPR Boosts Forage Growth in Ryegrass, Fescue

Validating Exercise Prescription for Older Adults

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.