• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers investigate neuron differentiation in fruit fly brains

Bioengineer by Bioengineer
November 29, 2022
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The brains of all higher order animals are filled with a diverse array of neuron types, with specific shapes and functions. Yet, when these brains form during embryonic development, there is initially only a small pool of cell types to work with. So how do neurons diversify over the embryo’s development? Researchers know that neural stem cells called neuroblasts divide multiple times to sequentially produce neurons of specialized function, but the mechanisms of this process, and how the timing varies for different genes and neuron types, is still not fully understood.

Fruit fly researchers

Credit: Julia Pollack

The brains of all higher order animals are filled with a diverse array of neuron types, with specific shapes and functions. Yet, when these brains form during embryonic development, there is initially only a small pool of cell types to work with. So how do neurons diversify over the embryo’s development? Researchers know that neural stem cells called neuroblasts divide multiple times to sequentially produce neurons of specialized function, but the mechanisms of this process, and how the timing varies for different genes and neuron types, is still not fully understood.

In a new paper published in eLife, Alokananda Ray, a Ph.D candidate during the time of the study and now graduated, and Xin Li (GNDP), an assistant professor of cell and developmental biology at the University of Illinois Urbana-Champaign, shed light on the process in the optic medulla of Drosophila melanogaster, the fruit fly.

As neuroblasts divide and differentiate, they express transcription factors which ultimately direct the daughter cells on what kind of neuron to be. Because they are expressed in a particular way depending on when they split, these transcription factors, called temporal transcription factors, act as a marker that tells researchers what stage the neuroblast is at, and allows them to piece together the order of events in this neurogenesis cascade. The researchers focused on two different TTFs in the fruit fly brain, called eyeless and sloppy-paired, to better understand how differences in the expression of TTFs that lead to different neuron fates.

“Nervous systems diversify from a small pool of neural stem cells to the great diversity of neurons we see in adult brains of higher ordered animals,” said Ray. “We really wanted to understand the molecular mechanisms that drive the transition of these neuroblasts from expressing one temporal transcription factor to the next transcription factor, which ultimately determines what type of neurons these progenies will become.”

The researchers used genetics and a number of techniques including reporter assays, antibody staining and microscopy to measure the expression pattern of genes within the optic medulla of fruit fly brains during development. Typically, the regions of the DNA that are considered to be “important” are the sequences that contain genes. However, through these experiments, the researchers discovered that two non-coding regions near the sloppy-paired genes were essential to making sure the sloppy-paired TTFs expressed at the right time and amount. Researchers then removed these non-coding DNA regions, called enhancers, using the gene-editing technique CRISPR to see how the brain of the flies were affected, and found that flies with deleted enhancers showed a complete absence of expression of the sloppy-paired TTF in medulla neuroblasts.

“On the outside, we don’t see morphological changes from removing sloppy-paired enhancers, but neurons generated in the sloppy-paired stage will be missing from the brain, and I think the neurons generated in later stages will also be lost.” said Li.

The second major finding in the paper was that a mechanism called Notch-signaling works together with the preceding TTFs to activate the expression of the next TTFs in question. The researchers determined that not only is Notch-signaling important for regulating TTF expression, but the way it regulates is dependent on where in the neurogenesis cascade the cells are at. In other words, once a certain number of a specific neuron type have been made, Notch-signaling regulates the transition such that the neuroblasts start differentiating into a different neuron type.

“One TTF is required to activate the next TTF, but that alone is not sufficient to cause the transition,” explained Li. “After each cell cycle, Notch-signaling will further activate the next TTF until a certain level is reached, at which point it will repress the previous TTF, then the transition to the next TTF stage will happen. Basically, this mechanism couples the temporal patterning in these neural stem cells with the generation of the appropriate number of neurons at each temporal stage.”  

Though TTFs vary between animals, Notch-signaling is highly conserved, meaning that understanding the molecular mechanisms that regulate neuron differentiation in the fly can potentially translate across other higher-order animals. The findings in this study illuminate some of the mechanisms underlying neuron diversity in the brain, but the researchers said there is more to be explored.

“Identifying the molecular determinants, or enhancers, that are required for the transition to take place from eyeless to sloppy-paired gives us ideas for how other transitions may also be regulated,” Ray explained. “We’re going to try to identify other enhancers that previous TTFs bind to activate the expression of subsequent factors.”

The paper, titled “A Notch-dependent transcriptional mechanism controls expression of temporal patterning factors in Drosophila medulla” is published in eLife (https://doi.org/10.7554/eLife.75879), and was supported by the National Eye Institute.



Journal

eLife

DOI

10.7554/eLife.75879

Method of Research

Experimental study

Subject of Research

Animals

Article Title

A Notch-dependent transcriptional mechanism controls expression of temporal patterning factors in Drosophila medulla

Article Publication Date

30-Aug-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

Innovative Material Design Enables Magnetic Tunability in Quasicrystal Approximants

August 27, 2025
Chemically Tuning Quantum Spin–Electric Coupling in Magnets

Chemically Tuning Quantum Spin–Electric Coupling in Magnets

August 27, 2025

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Patient and Physician Perspectives on Evolocumab Use

Organ Preservation: Who Accesses the Data?

Prioritizing Student Mental Health: Key Insights from BMES

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.