• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers identify treatment target for blinding diseases

Bioengineer by Bioengineer
September 29, 2016
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research published in Cell Reports identifies a potential treatment target for blinding diseases such as retinitis pigmentosa and advanced dry age-related macular degeneration. In the study, researchers at Washington University in St. Louis School of Medicine (supported in part by an unrestricted Research to Prevent Blindness grant to the Department of Ophthalmology) explored how the retina’s photoreceptors — the rods and cones responsible for detecting light, color, contrast, and sharpness — are damaged over the course of these diseases.

MD/PhD student Jonathan Lin (left) and Rajendra S. Apte, MD, PhD, of Washington University School of Medicine in St. Louis. Credit: Robert Boston / Washington University
MD/PhD student Jonathan Lin (left) and Rajendra S. Apte, MD, PhD, of Washington University School of Medicine in St. Louis.
Credit: Robert Boston / Washington University

“We believe we have uncovered a unifying pathway involved in inflicting severe damage to and even causing the death of rods and cones,” said Jonathan B. Lin, an MD/PhD student and co-first author with Shunsuke Kubota, MD, PhD. “These findings should help us develop treatments for retinal disorders, regardless of what’s causing them.”

Lin works in the laboratory of senior investigator Rajendra S. Apte, MD, PhD, the Paul A. Cibis Distinguished Professor of Ophthalmology and Visual Sciences, who is a recipient of an RPB Physician-Scientist Award and also recently published key findings on the Zika virus. In a series of experiments in mice and retinal cells, the researchers identified a key molecule — NAD — in the cascade that leads to the death of the retina’s rods and cones.

Lin, Apte and colleagues found that defects in the same NAD pathway appear to be involved in several different diseases of the retina. When they treated damaged photoreceptor cells in mice with a second molecule called NMN — a precursor molecule that boosts levels of NAD — the cells’ degeneration ceased and vision was restored.

“This is exciting because we may have found a reason why these highly metabolically active cells are susceptible to damage and death when the NAD pathway does not function optimally,” said Apte, also a professor of developmental biology and neuroscience and of medicine.

The pathway offers a promising target for therapies for multiple retinal diseases, including retinitis pigmentosa, a cause of blindness that impairs vision over many years and for which there is currently no cure.

Source: Research to Prevent Blindness.

Journal Reference:

Jonathan B. Lin, Shunsuke Kubota, Norimitsu Ban, Mitsukuni Yoshida, Andrea Santeford, Abdoulaye Sene, Rei Nakamura, Nicole Zapata, Miyuki Kubota, Kazuo Tsubota, Jun Yoshino, Shin-ichiro Imai, Rajendra S. Apte. NAMPT-Mediated NAD Biosynthesis Is Essential for Vision In Mice. Cell Reports, 2016; 17 (1): 69 DOI: 10.1016/j.celrep.2016.08.073

The post Researchers identify treatment target for blinding diseases appeared first on Scienmag.

Share12Tweet8Share2ShareShareShare2

Related Posts

Questionnaires for Assessing Patient Preferences in Consultations

October 8, 2025

Puberty Timing Linked to PAH-Alb Adducts Levels

October 8, 2025

KDM4B Regulates ERα in Vascular Cell Calcification

October 8, 2025

Breakthrough Blood Test for ME/Chronic Fatigue Syndrome Unveiled

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1011 shares
    Share 404 Tweet 253
  • New Study Reveals the Science Behind Exercise and Weight Loss

    99 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    77 shares
    Share 31 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Questionnaires for Assessing Patient Preferences in Consultations

Puberty Timing Linked to PAH-Alb Adducts Levels

KDM4B Regulates ERα in Vascular Cell Calcification

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.