• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers identify how metabolites target brain-homing immune cells to treat MS

Bioengineer by Bioengineer
February 28, 2019
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The discovery could lead to novel, more specific, and more effective MS therapies and a better understanding of how the disease develops

IMAGE

Credit: Carter Eitreim

NEW YORK, February 28, 2019 – Understanding and mitigating the role of epigenetics (environmental influences that trigger changes in gene expression) in disease development is a major goal of researchers. Now, a newly published paper featured on the March cover of the journal Brain adds significantly to this work by detailing how metabolites can be used to inhibit epigenetic mechanisms and effectively treat a range of diseases, including multiple sclerosis (MS).

Dimethyl fumarate (Tecfidera™)–a cell-permeable metabolite in the family of fumaric acid esters (FAEs)–is an approved treatment for MS and is potentially an effective therapy for other autoimmune diseases. The precise mechanism of the drug’s action has been only partially understood, however. In their new paper, researchers at the Advanced Science Research Center (ASRC) at The Graduate Center of The City University of New York and the Icahn School of Medicine at Mount Sinai take a major step toward unraveling the mystery by identifying a possible mechanism of action for FAEs. In doing so, they also highlight new concepts that may lay the groundwork for the development of novel classes of drugs for the treatment of MS and other diseases.

Scientists believe that MS develops when epigenetic changes cause certain brain-homing immune cells–or T cells–to attack the central nervous system. In their current paper, researchers posited that FAE metabolites work by mitigating the development of certain brain-homing T cells.

“This work has given us extremely useful insight into how we might leverage the metabolic-epigenetic interplay between cells and their environment to create new immune-modulating therapies for diseases like MS,” said Patrizia Casaccia, director of the ASRC Neuroscience Initiative and a professor of genetics and neuroscience at Mount Sinai. “It may one day be possible to target and suppress production of the specific brain-homing T cells that play a role in the development of MS.”

Methodology

Researchers recruited 97 volunteers with MS that were either treatment-naïve (47), FAE-treated (35), or glatiramer acetate-treated (16). Blood samples were collected from each participant and their levels of brain-homing T cells were measured by looking at the percentages of the chemokine receptors CCR4 and CCR6, which are critical to T cell trafficking between the gut, brain, and skin. The data showed significantly lower levels of these brain-homing T cells in the FAE-treated group than in the other comparison groups.

Researchers subsequently analyzed how FAEs change the epigenetic landscape of T cells to reduce the development of these pathogenic cells. Specifically, they found that FAEs have a strong epigenetic effect on a particular DNA region in T cells that includes a micro RNA called MIR-21, which is necessary to create disease-associated brain-homing T cells. Taken together, the results suggest that the immunomodulatory effect of FAEs in MS is at least in part due to the epigenetic regulation of these specific brain-homing T cells.

Significance

“Our findings about therapeutically active metabolites have implications for the treatment of not only multiple sclerosis but also other autoimmune diseases such as psoriasis and inflammatory bowel disease, which involve the same type of T cells,” said Achilles Ntranos, lead author of the paper and a physician and neuroimmunology fellow at Mount Sinai Hospital whose work is supported by the Leon Levy Foundation and the National Institute of Neurological Disorders and Strokes. “Understanding the epigenetic effect of metabolites on the immune system will help us develop several novel strategies for the treatment of autoimmune diseases, which could help patients and physicians achieve better clinical outcomes.”

###

Organizational Attribution

Our correct name is the Advanced Science Research Center at The Graduate Center of The City University of New York. For the purpose of space, Advanced Science Research Center, GC/CUNY is acceptable. On second reference, ASRC is correct.

About the Advanced Science Research Center

The ASRC at The Graduate Center elevates scientific research and education at CUNY and beyond through initiatives in five distinctive, but increasingly interconnected disciplines: environmental sciences, nanoscience, neuroscience, photonics, and structural biology. The ASRC promotes a collaborative, interdisciplinary research culture with renowned researchers from each of the initiatives working side by side in the ASRC’s core facilities, sharing equipment that is among the most advanced available.

About The Graduate Center of The City University of New York

The Graduate Center of The City University of New York (CUNY) is a leader in public graduate education devoted to enhancing the public good through pioneering research, serious learning, and reasoned debate. The Graduate Center offers ambitious students more than 40 doctoral and master’s programs of the highest caliber, taught by top faculty from throughout CUNY — the nation’s largest public urban university. Through its nearly 40 centers, institutes, and initiatives, including its Advanced Science Research Center (ASRC), The Graduate Center influences public policy and discourse and shapes innovation. The Graduate Center’s extensive public programs make it a home for culture and conversation.

Media Contact
Shawn Rhea
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/brain.5303708

Tags: BiologyCell BiologyGenesneurobiology
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

AFAR Secures Over $5.7 Million NIH Renewal Funding for Nathan Shock Centers Coordinating Center

August 15, 2025
Lead in Breast Cancer Tissue Linked to DNA Instability

Lead in Breast Cancer Tissue Linked to DNA Instability

August 15, 2025

NRG Oncology Launches “ARCHER” Trial (NRG-GU015) Exploring Shortened Radiation Therapy for Muscle-Invasive Bladder Cancer

August 15, 2025

Monell Center Researchers Unveil Latest Discoveries at International Consumer Sensory Science Conference

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AFAR Secures Over $5.7 Million NIH Renewal Funding for Nathan Shock Centers Coordinating Center

Immunotherapy Prolongs Survival in Patients with Rare Skin Cancer

Multifocus Microscope Breaks New Ground in Rapid 3D Live Biological Imaging

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.