• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers identify biomarkers of response to treatment in invasive breast cancer

Bioengineer by Bioengineer
December 8, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CHAPEL HILL – Why do some breast cancers respond to treatment while others resist it? A study led by researchers at the University of North Carolina Lineberger Comprehensive Cancer Center may provide insight into this important question.

The researchers report at the San Antonio Breast Cancer Symposium that they have identified biomarkers they believe can be used as part of a larger model to predict how patients with HER2-positive operative breast cancer will respond to the targeted treatment trastuzumab, commercially known as Herceptin, and chemotherapy.

"We're trying to find biomarkers for resistance to trastuzumab treatment and chemotherapy," said the study's first author Maki Tanioka, MD, PhD, a postdoctoral research associate at UNC Lineberger. "What's the cause of response? What's the cause of resistance? That's what we are trying to identify in this genomic study."

Tanioka and his colleagues analyzed multiple biologic features of cancer cells from 213 patients treated for HER2-positive breast cancer through a National Cancer Institute cooperative group clinical trial, CALGB 40601. The biologic features included multiple kinds of genetic information such as DNA mutations, DNA copy number and RNA gene expression data. The researchers found that certain gene signatures, and either having too many, or too few, of certain genes were predictive of whether patients responded to treatment, and that combining those two features was the most effective method of predicting response.

Examining features like mutations, amplifications or deletions of genes in tumor cells, the overall subtype of the tumor, as well as indicators of immune responses helped the researchers predict response. The researchers also determined that amplification of a specific chromosome, and a particular gene called MAPK14 on that chromosome, may be a predictor of sensitivity to treatment, while deletions of other genes predicted resistance.

The researchers say the next step is to identify another set of data to validate and broaden their findings.

"HER2-positive breast cancer is genomically heterogeneous," Tanioka said. "Therefore, we need a model that incorporates all these different features. We are actively seeking a set of patient data that we can use to validate the biomarkers we have identified so we can create a comprehensive predictive model of response to allow us to better tailor treatment."

###

In addition to Tanioka, other authors include: C. Fan, L.A. Carey, T. Hyslop, B.N. Pitcher, J. Parker, K.A. Hoadley, N.L. Henry, S. Tolaney, C. Dang, I.E. Krop, L. Harris, D.A. Berry, E. Mardis, C.M. Perou, E.P. Winer, and C.A. Hudis.

Media Contact

Laura Oleniacz
[email protected]
919-445-4219

http://cancer.med.unc.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

New Predictive Model for Postpartum Hemorrhage in Cesarean Cases

September 1, 2025

Novel ADC Targets Fucosyl-GM1 in Lung Cancer

September 1, 2025

AI-Powered Adaptive Tutoring for Moodle: A Breakthrough

September 1, 2025

Ethiopia’s Electronic Health System: Status and Opportunities

September 1, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Predictive Model for Postpartum Hemorrhage in Cesarean Cases

Novel ADC Targets Fucosyl-GM1 in Lung Cancer

AI-Powered Adaptive Tutoring for Moodle: A Breakthrough

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.