• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers from IVF-CAAS revealed the molecular mechanism of CsMLO8/11 in regulating cucumber powdery mildew resistance

Bioengineer by Bioengineer
February 27, 2024
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recently, the innovation team of Cucurbitaceae Vegetable Genetics and Breeding at Institute of Vegetables and Flowers (IVF, CAAS) made important progress in molecular mechanism of powdery mildew (PM) resistance in cucumber. The paper was published in 《Horticulture Research》(IF=8.7) with the title of “CsMLO8/11 are required for full susceptibility of cucumber stem to powdery mildew and interact with CsCRK2 and CsRbohD”.

Figure 1.

Credit: Horticulture Research

Recently, the innovation team of Cucurbitaceae Vegetable Genetics and Breeding at Institute of Vegetables and Flowers (IVF, CAAS) made important progress in molecular mechanism of powdery mildew (PM) resistance in cucumber. The paper was published in 《Horticulture Research》(IF=8.7) with the title of “CsMLO8/11 are required for full susceptibility of cucumber stem to powdery mildew and interact with CsCRK2 and CsRbohD”.

PM is one of the most destructive diseases that threaten cucumber production globally. Efficient breeding of novel PM-resistant cultivars, will require a robust understanding of the molecular mechanisms for cucumber resistance against PM. Using a genome wide association study (GWAS), we detected a locus significantly correlated with PM resistance in cucumber stem, pm-s5.1. A 1,449-bp insertion in the CsMLO8 coding region at the pm-s5.1 locus results in enhanced stem PM resistance. Knockout mutants of CsMLO8 and CsMLO11 generated by CRISPR/Cas9 both showed improved PM resistance in the stem, hypocotyl and leaves, and the double mutant mlo8mlo11 displayed even stronger resistance. We found that reactive oxygen species (ROS) accumulation was higher in the stem of these mutants. Protein interaction assays suggested that CsMLO8 and CsMLO11 could physically interact with CsRbohD and CsCRK2, respectively. Further, we showed that CsMLO8 and CsCRK2 competitively interact with the C-terminus of CsRbohD to affect the CsCRK2-CsRbohD module-mediated ROS production during PM defense. These findings provide new insights into the understanding of CsMLO proteins during PM defense responses.

This study was led by groups from IVF-CAAS, Prof. Zhang Shengping, Prof. Yang Xueyong, and Prof. Sun Jiaqiang are co-corresponding authors. Dong Shaoyun, Liu Xin, Han jianan, and Miao Han contributed equally to this work as co-first authors. This work was funded by the National Natural Science Foundation of China, Beijing Municipal Science and Technology Commission Program, the Earmarked Fund for Modern Agro-industry Technology Research System, Science and Technology Innovation Program of the Chinese Academy of Agricultural Science.

Link to this paper: https://doi.org/10.1093/hr/uhad295

By Shaoyun Dong ([email protected])



Journal

Horticulture Research

DOI

10.1093/hr/uhad295

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

CsMLO8/11 are required for full susceptibility of cucumber stem to powdery mildew and interact with CsCRK2 and CsRbohD

Article Publication Date

29-Dec-2023

COI Statement

The authors declare that they have no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

Efficient Framework Models Ionic Materials’ Surface Chemistry

Efficient Framework Models Ionic Materials’ Surface Chemistry

August 15, 2025
blank

Discovery of Intrinsic HOTI-Type Topological Hinge States in Photonic Metamaterials

August 15, 2025

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

August 15, 2025

High-Throughput Discovery of Fluoroprobes for Amyloid

August 15, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Efficient Framework Models Ionic Materials’ Surface Chemistry

Cell Death’s Dual Role in Apical Periodontitis

Respiration Defects Hinder Serine Synthesis in Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.