• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers from IVF-CAAS revealed the molecular mechanism of CsMLO8/11 in regulating cucumber powdery mildew resistance

Bioengineer by Bioengineer
February 27, 2024
in Chemistry
Reading Time: 3 mins read
0
Figure 1.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Recently, the innovation team of Cucurbitaceae Vegetable Genetics and Breeding at Institute of Vegetables and Flowers (IVF, CAAS) made important progress in molecular mechanism of powdery mildew (PM) resistance in cucumber. The paper was published in 《Horticulture Research》(IF=8.7) with the title of “CsMLO8/11 are required for full susceptibility of cucumber stem to powdery mildew and interact with CsCRK2 and CsRbohD”.

Figure 1.

Credit: Horticulture Research

Recently, the innovation team of Cucurbitaceae Vegetable Genetics and Breeding at Institute of Vegetables and Flowers (IVF, CAAS) made important progress in molecular mechanism of powdery mildew (PM) resistance in cucumber. The paper was published in 《Horticulture Research》(IF=8.7) with the title of “CsMLO8/11 are required for full susceptibility of cucumber stem to powdery mildew and interact with CsCRK2 and CsRbohD”.

PM is one of the most destructive diseases that threaten cucumber production globally. Efficient breeding of novel PM-resistant cultivars, will require a robust understanding of the molecular mechanisms for cucumber resistance against PM. Using a genome wide association study (GWAS), we detected a locus significantly correlated with PM resistance in cucumber stem, pm-s5.1. A 1,449-bp insertion in the CsMLO8 coding region at the pm-s5.1 locus results in enhanced stem PM resistance. Knockout mutants of CsMLO8 and CsMLO11 generated by CRISPR/Cas9 both showed improved PM resistance in the stem, hypocotyl and leaves, and the double mutant mlo8mlo11 displayed even stronger resistance. We found that reactive oxygen species (ROS) accumulation was higher in the stem of these mutants. Protein interaction assays suggested that CsMLO8 and CsMLO11 could physically interact with CsRbohD and CsCRK2, respectively. Further, we showed that CsMLO8 and CsCRK2 competitively interact with the C-terminus of CsRbohD to affect the CsCRK2-CsRbohD module-mediated ROS production during PM defense. These findings provide new insights into the understanding of CsMLO proteins during PM defense responses.

This study was led by groups from IVF-CAAS, Prof. Zhang Shengping, Prof. Yang Xueyong, and Prof. Sun Jiaqiang are co-corresponding authors. Dong Shaoyun, Liu Xin, Han jianan, and Miao Han contributed equally to this work as co-first authors. This work was funded by the National Natural Science Foundation of China, Beijing Municipal Science and Technology Commission Program, the Earmarked Fund for Modern Agro-industry Technology Research System, Science and Technology Innovation Program of the Chinese Academy of Agricultural Science.

Link to this paper: https://doi.org/10.1093/hr/uhad295

By Shaoyun Dong ([email protected])



Journal

Horticulture Research

DOI

10.1093/hr/uhad295

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

CsMLO8/11 are required for full susceptibility of cucumber stem to powdery mildew and interact with CsCRK2 and CsRbohD

Article Publication Date

29-Dec-2023

COI Statement

The authors declare that they have no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025
Innovative ‘Molecular Dam’ Prevents Energy Loss in Nanocrystals

Innovative ‘Molecular Dam’ Prevents Energy Loss in Nanocrystals

October 23, 2025

Physicists Explore Atomic Nuclei Using Innovative Molecule-Based Technique

October 23, 2025

Unlocking Smarter Devices and Safer Drugs: UH Crystals Expert Advances Crystal Formation Control

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1278 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    182 shares
    Share 73 Tweet 46
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How a Food Tax Shift Could Save Lives Without Raising Grocery Bills

Key Nervous System Components Found to Regulate Gastrointestinal Tumor Growth

Ruminococcus torques: A Breakthrough in Gut Health

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.