• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers fold a protein within a protein

Bioengineer by Bioengineer
February 12, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Dr Chester L. Drum

A team from the NUS Yong Loo Lin School of Medicine (NUS Medicine) has invented a fundamentally new way of folding and protecting recombinant proteins. Sourced from the rapidly expanding field of synthetic biology, this protein-in-a-protein technology can improve functional protein yields by 100-fold and protect recombinant proteins from heat, harsh chemicals and proteolysis.

The expression and stabilisation of recombinant proteins is the cornerstone of the biologics and pharmaceutical industries. The costs and complexity associated with manufacturing difficult-to-fold recombinant proteins at an industrial scale are a significant limiting factor to their use in clinical and industrial applications.

The study led by Dr Chester Drum, Assistant Professor at the Departments of Medicine and Biochemistry, NUS Medicine was published in the journal Nature Communications on 13 November 2017. Dr Drum and colleagues engineered a 12-nanometre diameter exoshell and wrapped it around a protein of interest (POI). They showed for the first time that this technology can be used to fold and protect a variety of proteins within engineered cavities that are less than 1:10,000 the width of a human hair.

The researchers developed this protein-within-a-protein technology with the help of Archeoglobus fulgidus, a hardy bacteria that is naturally found in hydrothermal vents. These hyper-thermophilic bacteria have evolved unique solutions for protein folding and stabilisation due to the extreme environments in which they live.

In particular, the researchers made use of an iron-carrying, 24-subunit protein in A. fulgidus called ferritin, whose natural function is to store and carry iron in the blood. Ferritin from A. fulgidus has two unique properties: first, four tiny pores in its shell provide small molecules access into the cavity; second, unlike human ferritin which is stable at low salt concentrations, the engineered A. fulgidus ferritin dissociates at low salt concentrations, allowing the contents of the cavity to be released by a simple pH switch from 8.0 to 5.8. Once dissociated, the POI can be released enzymatically.

To demonstrate the wide versatility of their technology, the researchers tested their exoshell technology by fusing one of the 24 ferritin subunits around three POIs with diverse properties — green fluorescent protein, horseradish peroxidase (HRP) and Renilla luciferase.

Not only did the exoshell help increase the yields of all three POIs, the researchers were also able to deliver cofactors heme and calcium, in addition to oxidising conditions, to ensure that complex POIs such as HRP protein could fold and function properly.

Besides helping to fold the POIs correctly, the exoshells were also protective against a wide range of denaturants, including high concentration trypsin; organic solvents such as acetonitrile and methanol; and denaturants such as urea, guanidine hydrochloric acid, and heat.

"We hypothesise that the significant increase in functional protein yield may be due to the complementation between the negatively charged proteins and the positively charged exoshell internal surface. Our findings highlight the potential of using highly engineered nanometer-sized shells as a synthetic biology tool to dramatically affect the production and stability of recombinant proteins," said Dr Drum, who is also a consultant cardiologist at the National University Hospital and director of the Clinical Trial Innovation Lab at TLGM, A*STAR.

Recruited to the National University of Singapore in 2011, he has since received funding from the Singapore MIT Alliance for Research and Technology, National Medical Research Council, Biomedical Research Council, A*STAR and NUS Medicine.

Dr Drum's current research bridges the gap between basic biochemistry and clinical care. He is currently the primary investigator on a multi-institutional, 3,000-person observational trial in Singapore that studies how personalised drug metabolism affects drug response.

###

Media Contact

Simin WANG
[email protected]
65-677-27804

http://medicine.nus.edu.sg/corporate/index.html

Related Journal Article

http://dx.doi.org/10.1038/s41467-017-01585-2

Share12Tweet7Share2ShareShareShare1

Related Posts

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.