• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, January 14, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers find quantum gravity has no symmetry

Bioengineer by Bioengineer
June 19, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Harlow and Ooguri

A new study by a pair of researchers in the US and Japan has found that, when gravity is combined with quantum mechanics, symmetry is not possible.

“Many physicists believe that there must a beautiful set of laws in Nature and that one way to quantify the beauty is by symmetry. Some of the symmetries may be hidden in our world, but they should manifest themselves if we look at Nature at a more fundamental level. We showed that this expectation is wrong once we take into account the gravity,” said Hirosi Ooguri, Director of the Kavli Institute for the Physics and Mathematics of the Universe, and one of the paper authors.

There are four kinds of fundamental forces in Nature: electromagnetism, strong force, weak force, and gravity. Of the four, the gravity is the only one still unexplainable at the quantum level. Researchers believe the holographic principle is an important hint to combine the gravity and quantum mechanics successfully.

A hologram makes three-dimensional images pop out from a two-dimensional screen. Similarly, the holographic principle allows physicists to study gravitational systems by projecting them on a boundary that surrounds the entire Universe. The AdS/CFT (anti-de Sitter/conformal field theory) correspondence, developed in the late 1990s by Juan Maldacena, has been particularly useful because it gives a precise mathematical definition of the holographic principle.

In the paper published on May 17, Ooguri and Daniel Harlow, Assistant Professor at Massachusetts Institute of Technology, proved that symmetry is not possible in a gravitational theory if it obeys the holographic principle.

Previous work by Harlow and others had found a precise mathematical analogy between the holographic principle and quantum error correcting codes, which protects information in a quantum computer. In the new paper, Ooguri and Harlow showed such quantum error correcting codes are not compatible with any symmetry, meaning that symmetry would not be possible in quantum gravity.

Their result has several important consequences. In particular, it predicts that the protons are stable against decaying into other elementary particles, and that magnetic monopoles exist.

Details of their study were published in Physical Review Letters on May 17 and selected for Editor’s Suggestion “due to its particular importance, innovation, and broad appeal.”

###

Media Contact
Motoko Kakubayashi
[email protected]

Original Source

https://www.ipmu.jp/en/20190619-symmetry

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.122.191601

Tags: Chemistry/Physics/Materials SciencesParticle PhysicsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
blank

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    73 shares
    Share 29 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    52 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pre-Breakfast Hand Bathing Boosts Postoperative Recovery Comfort

Exploring Dorstenia barnimiana’s Antioxidant and Antibacterial Properties

Pre-Breakfast Bathing Boosts Post-Surgery Comfort in Japan

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.