• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers find new way to protect plants from fungal infection

Bioengineer by Bioengineer
September 22, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Perino et al. in Phytopathology

Widespread fungal disease in plants can be controlled with a commercially available chemical that has been primarily used in medicine until now. This discovery was made by scientists from Martin Luther University Halle-Wittenberg (MLU) and the University of the State of ParanĂ¡ in Brazil. In a comprehensive experiment the team has uncovered a new metabolic pathway that can be disrupted with this chemical, thus preventing many known plant fungi from invading the host plant. The team reported on their study in the scientific journal Phytopathology.

The fungus Colletotrichum graminicola is prevalent around the world. It infects maize, causing anthracnose, a disease that causes the plant’s leaves to turn yellow at first and then ultimately to succumb to toxins. The fungus multiplies through spores that initially land on the surface of the plant. There they find rather inhospitable conditions: a lack of most of the nutrients that fungi need to develop – in particular nitrogen. “The only option they have is to break down some of their own nitrogen-containing molecules, for instance purines, the building blocks of DNA or RNA,” explains plant pathologist Professor Holger Deising from MLU.

The researchers on Deising’s team have found a way to impede this transitional phase which the fungus relies on. To do this, the team administered acetohydroxamic acid onto the plants, a substance also used to treat harmful bacteria in the human stomach, and which is known to inhibit the breakdown of urea. “The acid prevents the harmful fungi from penetrating into the plants and from becoming infectious,” says Deising.

The team also tested whether the findings from C. graminicola and maize could be transferred to other plants and fungi. The acid was also found to be effective against numerous other pathogens which cause, for example, powdery mildew in cereal crops, late blight in potatoes, as well as corn and bean rust. “We have been able to develop a completely new approach to pathogen control that uses an existing active ingredient and thus can be quickly used commercially,” says Deising.

The scientists conducted extensive experiments in order to come to their conclusions. They wanted to understand the molecular details of how the fungus manages to obtain nitrogen at the onset of the infection. First, they generated a series of random mutations in the genome of the fungus C. graminicola. “Then we inoculated the different fungal mutants onto the plants to see which ones were no longer infectious,” says Deising. One of these mutants had a defect in the purine degradation pathway. In order to check whether the mutants’ failure to infect the plant was actually caused by a lack of nitrogen, the researchers then applied nitrogen to the plants. “Once nitrogen was added, even the harmless mutants became infectious again,” says Deising. The team was able to induce the same defect they had observed in the mutants in wildtype fungi by applying acetohydroxamic acid because it blocks the purine degradation pathway, too.

###

The study was funded by Brazil’s Ministry of Education, the Brazilian National Council for Scientific and Technological Development, and within the framework of the international graduate school “AGRIPOLY” at MLU, which is financed by the European Social Fund (ESF).

Study: Benatto Perino E., Glienke C., Silva A. & Deising H. Molecular Characterization of the Purine Degradation Pathway Genes ALA1 and URE1 of the Maize Anthracnose Fungus Colletotrichum graminicola Identified Urease as a Novel Target for Plant Disease Control. Phytopthology (2020). doi: 10.1094/PHYTO-04-20-0114-R
https://doi.org/10.1094/PHYTO-04-20-0114-R

Media Contact
Tom Leonhardt
[email protected]

Original Source

https://pressemitteilungen.pr.uni-halle.de/index.php?modus=pmanzeige&pm_id=5103

Related Journal Article

http://dx.doi.org/10.1094/PHYTO-04-20-0114-R

Tags: AgricultureBiologyChemistry/Physics/Materials SciencesFertilizers/Pest Management
Share12Tweet8Share2ShareShareShare2

Related Posts

New analysis across the tree of life reveals most species evolved during bursts of rapid diversification

New analysis across the tree of life reveals most species evolved during bursts of rapid diversification

August 20, 2025
For Apes, What’s Out of Sight Stays on Their Mind

For Apes, What’s Out of Sight Stays on Their Mind

August 20, 2025

Soybean Phytocytokine-Receptor Module Boosts Disease Resistance

August 20, 2025

Breakthrough Study Reveals New Methods to Protect Nerve Cells from ALS

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Parkinson’s Treatment with PLGA Carriers

Scientists Amazed by Enormous Bubble Surrounding Supergiant Star

Early Teen Sleep Issues Linked to Increased Risk of Future Self-Harm

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.