• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers find new clues for nuclear waste cleanup

Bioengineer by Bioengineer
February 23, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Washington State University

PULLMAN, Wash. – A Washington State University study of the chemistry of technetium-99 has improved understanding of the challenging nuclear waste and could lead to better cleanup methods.

The work is reported in the journal Inorganic Chemistry. It was led by John McCloy, associate professor in the School of Mechanical and Materials Engineering, and chemistry graduate student Jamie Weaver. Researchers from Pacific Northwest National Laboratory (PNNL), the Office of River Protection and Lawrence Berkeley National Laboratory collaborated.

Technetium-99 is a byproduct of plutonium weapons production and is considered a major U.S. challenge for environmental cleanup. At the Hanford Site nuclear complex in Washington state, there are about 2,000 pounds of the element dispersed within approximately 56 million gallons of nuclear waste in 177 storage tanks.

The U.S. Department of Energy is in the process of building a waste treatment plant at Hanford to immobilize hazardous nuclear waste in glass. But researchers have been stymied because not all the technetium-99 is incorporated into the glass and volatilized gas must be recycled back into the melter system.

The element can be very soluble in water and moves easily through the environment when in certain forms, so it is considered a significant environmental hazard.

Because technetium compounds are challenging to work with, earlier research has used less volatile substitutes to try to understand the material's behavior. Some of the compounds themselves have not been studied for 50 years, said McCloy. "The logistics are very challenging," he said.

The WSU work was done in PNNL's highly specialized Radiochemical Processing Laboratory and the radiological annex of its Environmental Molecular Sciences Laboratory.

The researchers conducted fundamental chemistry tests to better understand technetium-99 and its unique challenges for storage. They determined that the sodium forms of the element behave much differently than other alkalis, which possibly is related to its volatility and to why it may be so reactive with water.

"The structure and spectral signatures of these compounds will aid in refining the understanding of technetium incorporation into nuclear waste glasses," said McCloy.

The researchers also hope the work will contribute to the study of other poorly understood chemical compounds.

###

Media Contact

Jamie Weaver, WSU postdoctoral research associate
[email protected]
509-378-1836
@WSUNews

Washington State University

############

Story Source: Materials provided by Scienmag

Share14Tweet7Share2ShareShareShare1

Related Posts

Boosting Nursing Informatics Literacy with Design Learning

October 18, 2025

Cardiovascular Risks in COPD Patients Using LABA or LAMA

October 18, 2025

CSF Brain Proteins Linked to Ventricular Volume in Seniors

October 18, 2025

Exercise-Conditioned Serum Inhibits Prostate Cancer Growth

October 18, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1261 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    285 shares
    Share 114 Tweet 71
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    120 shares
    Share 48 Tweet 30
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Nursing Informatics Literacy with Design Learning

Cardiovascular Risks in COPD Patients Using LABA or LAMA

CSF Brain Proteins Linked to Ventricular Volume in Seniors

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.