• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers find genetic pathways to individualized treatment for advanced prostate cancer

Bioengineer by Bioengineer
November 1, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

ROCHESTER, Minn. — Researchers at Mayo Clinic Center for Individualized Medicine have uncovered genetic clues to why tumors resist a specific therapy used for treating advanced prostate cancer. This discovery can guide health care providers to individualized treatments for castration-resistant prostate cancer, a deadly disease that does not respond to standard hormone therapy. Several U.S. Food and Drug Administration approved therapies are available for castration-resistant prostate cancer, but the treatments affect each patient differently.

New research from Manish Kohli, M.D., principal investigator, and Liewei Wang, M.D., Ph.D., laboratory co-principal investigator, has found genetic markers that may predict resistance to the drug abiraterone acetate/prednisone, a treatment aimed at stopping progression of advanced, metastasized prostate cancer. Understanding the genetic markers of tumors and their drug resistance enables health care providers to match a therapy that is likely to succeed on the first try.

The research of Dr. Kohli and his Mayo colleagues, "A Prospective Genome-Wide Study of Prostate Cancer Metastases Reveals Association of Wnt Pathway Activation and Increased Cell Cycle Proliferation with Primary Resistance to Abiraterone Acetate-Prednisone," is published online in the Oct. 23 edition of Annals of Oncology.

"Prostate cancer is different in every patient." says Dr. Kohli. "In this groundbreaking study, we explored thousands of genetic characteristics in each tumor, and identified specific genes — for example a set of genes called cell cycle proliferation genes –that now allow us to take an individualized approach to treatment with this drug. Our observations enhance the development of predictive biomarker-based strategies for patients with advanced castration-resistant prostate cancer."

The research comes from a study at Mayo Clinic between 2013 and 2015. Whole-exome DNA sequencing, which looks at all the disease-causing genes, and RNA sequencing, which looks deeply into each individual gene, were performed on metastasized tumors of 92 study participants before treatment. Those same tests were performed again after 12 weeks. Investigators in Dr. Wang's lab also attempted to grow the patient's cancer in mice from a piece of the patient's cancer tissue. Experimental drugs were then tested on cancers that grew in mice.

"The discovery of these genetic signals after such an elaborate and extensive evaluation of the patients' genetic makeup has not been previously performed," says Dr. Kohli." Such knowledge can empower physicians to better manage patients with advanced-stage, castration-resistant prostate cancer."

Prostate cancer affects approximately 1 in 7 men in the U.S. — 10 to 20 percent of whom will develop castration-resistant prostate cancer. The average life expectancy at that advanced stage is less than 19 months.

"This research is an example of how Mayo Clinic and the Center for Individualized Medicine are transforming patient care through advanced genetic tests to address the unmet needs of our patients with advanced prostate cancer. This discovery is an additional way to customize treatment plans based on a patient's unique genetic makeup," says Keith Stewart, M.B., Ch.B., Carlson and Nelson Endowed Director of the Mayo Clinic Center for Individualized Medicine and the Vasek and Anna Maria Polak Professor of Cancer Research Division of Hematology-Oncology, Mayo Clinic.

Mayo Clinic researchers are recommending further study to determine which combination of drugs will best overcome drug resistance in patients with these genetic markers.

This study was funded in part by the Mayo Clinic Center for Individualized Medicine; Minnesota Partnership for Biotechnology and Medical Genomics; U.S. Department of Defense; National Institutes of Health — National Cancer Institute; Prostate Cancer Foundation; Mayo Clinic Schulze Cancer for Novel Therapeutics in Cancer Research; and Mayo Clinic philanthropic donors, A.T. Suharya and Ghan D.H., and Mr. and Mrs. Joseph and Gail Gassner.

Additional authors on the research team — all from Mayo Clinic, unless noted — are:

Liguo Wang, Ph.D.
Scott Dehm, Ph.D., University of Minnesota
David Hillman
Hugues Sicotte, Ph.D.
Winston Tan, M.D.
Michael Gormley, Johnson & Johnson
Vipul Bhargava, Ph.D., Johnson & Johnson
Rafael Jimenez, M.D.
Fang Xie, formerly of Mayo Clinic
Ping Yin
Sisi Qin, Ph.D.
J. Fernando Quevedo, M.D.
Brian Costello, M.D.
Henry Pitot, M.D.
Thai Ho, M.D., Ph.D.
Alan Bryce, M.D.
Zhenqing Ye, Ph.D.
Ying Li, Ph.D.
Patrick Eiken, M.D.
Peter Vedell
Poulami Barman
Brendan McMenomy, M.D.
Thomas Atwell, M.D.
Rachel Carlson
Marissa Ellingson
Bruce Eckloff
Rui Qin, Ph.D.
Fang-Shu Ou, Ph.D.
Steven Hart Ph.D.
Haojie Huang, Ph.D.
Jin Jen, M.D. Ph.D.
Eric Wieben, Ph.D. vKrishna Kalari, Ph.D.
Richard Weinshilboum, M.D.

About Center for Individualized Medicine

The Center for Individualized Medicine discovers and integrates the latest in genomic, molecular and clinical sciences into personalized care for each Mayo Clinic patient. For more information, visit mayoresearch.mayo.edu/center-for-individualized-medicine.

About Mayo Clinic

Mayo Clinic is a nonprofit organization committed to clinical practice, education and research, providing expert, comprehensive care to everyone who needs healing. For more information, visit mayoclinic.org/about-mayo-clinic or newsnetwork.mayoclinic.org.

###

Media Contact

Susan Buckles
[email protected]
507-284-5005
@MayoClinic

http://www.mayoclinic.org/news

https://newsnetwork.mayoclinic.org/discussion/mayo-clinic-researchers-find-genetic-pathways-to-individualized-treatment-for-advanced-prostate-cancer/

Share13Tweet7Share2ShareShareShare1

Related Posts

Early Hyperglycemia Linked to Risks in Low Birth Weight Infants

August 29, 2025
Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

August 29, 2025

NEXN Prevents Vascular Calcification via SERCA2 SUMOylation

August 29, 2025

Predictive Models Shape Transplant Eligibility Decisions

August 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Early Hyperglycemia Linked to Risks in Low Birth Weight Infants

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

NEXN Prevents Vascular Calcification via SERCA2 SUMOylation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.