• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers estimate time since death using necrobiome

Bioengineer by Bioengineer
December 22, 2016
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Currently, when a deceased human is discovered, the forensic techniques for estimating time elapsed since death is not very precise. However, in a new study appearing in the journal PLOS ONE, researchers have turned to analyzing the human microbiome, the bacteria and other microbes that live on and in our bodies, for clues about the postmortem interval of a cadaver.

A team led by Dr. Nathan H. Lents of the John Jay College of Criminal Justice, City University of New York (CUNY), sampled bacteria from the ear and nasal canals of 21 cadavers through several weeks of decomposition. They then analyzed the bacterial samples using Next-Generation metagenomic DNA sequencing to determine the identity and abundance of all microbes present. With this very large data set, the researchers used a machine learning approach to scrutinize the bacterial communities and how they change over time as the bodies decomposed. Through iterative testing and tweaking of their computational tools, the investigators built a statistical model that predicts the postmortem interval of unknown samples to within 55 accumulated degree-days, or about two days in summertime. This degree of accuracy holds through several weeks of decomposition, a substantial improvement over presently available methods.

"Our approach had the benefit of sampling the same cadavers repeatedly as they decomposed and we think that this really added to the ability of our machine learning approach to see through all of the massive amount of noisy data and detect the underlying patterns," said Dr. Lents. "While we consider this a pilot study, it is a very promising proof-of-concept, and I think that microbiome-based approaches will eventually become the standard method of determining the time since death for bodies that are discovered after some time of decomposition."

"This study takes us a step further [than the human microbiome], and tells us about the necrobiome, the collection of microbes on a dead body," said Dr. Robert DeSalle, Curator of Molecular Systematics at the American Museum of Natural History, who was not affiliated with the CUNY study. "By knowing which microbes take over a dead body and how long it takes, forensic scientists might be able to use this technique to determine time of death or other aspects of a crime scene."

With additional research, this microbiome-based method promises a far more definitive method to establish time since death, which could open and close avenues of investigation in homicide cases, shed light upon possible suspects, and corroborate or disprove alibis.

###

Read the full article at PLOS ONE: http://journals.plos.org/plosone/doi?id=10.1371/journal.pone.0167370

About PLOS ONE

The world's first multidisciplinary Open Access journal, PLOS ONE accepts scientifically rigorous research, regardless of novelty. PLOS ONE's broad scope provides a platform to publish primary research including interdisciplinary and replication studies as well as negative results. The journal's publication criteria are based on high ethical standards and the rigor of the methodology and conclusions reported.

About The City University of New York

The City University of New York is the nation's leading urban public university. Founded in New York City in 1847, the University comprises 24 institutions: 11 senior colleges, seven community colleges, and additional professional schools. The University serves nearly 275,000 degree-credit students and 218,083 adults, continuing and professional education students.

For more information, please contact Shante Booker or visit http://www.cuny.edu/research

Media Contact

Shante Booker
[email protected]
@cunyresearch

Home

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Next-Gen Reference Intervals for Pro-GRP Revealed

September 3, 2025
blank

Uncovering Challenges in Social Bot Detection

September 3, 2025

Navigating Healthcare Funding Challenges in Iran

September 3, 2025

Transforming Hawthorn Seed Waste into Diabetes Solutions

September 3, 2025
Please login to join discussion

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    297 shares
    Share 119 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Next-Gen Reference Intervals for Pro-GRP Revealed

Uncovering Challenges in Social Bot Detection

Navigating Healthcare Funding Challenges in Iran

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.