• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers discover new structures in bacteria, seek to determine function

Bioengineer by Bioengineer
June 13, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Washington, DC – June 13, 2017 – Using high magnification imaging, a team of researchers has identified several never before seen structures on bacteria that represent molecular machinery. The research is published this week in the Journal of Bacteriology, published by the American Society for Microbiology.

"The study drives home the point that a wealth of information remains to be discovered even about the fraction of bacteria that we know about," said Catherine Oikonomou, PhD, a research scientist in Grant J. Jensen's laboratory at the California Institute of Technology, Pasadena. "Even well-studied species contain prominent structural features that we didn't know about before, whose function is still unknown."

The study grew out of a chance observation of previously unknown appendages on the bacterium, Prosthecobacter debontii. "We couldn't find any clues about their identity in the literature," said Oikonomou.

Following that discovery, the investigators, led by Megan Dobro, PhD, assistant professor of human biology at Hampshire College, Amherst, MA, conducted a visual survey of 3D electron cryotomograms of intact cells from 88 species of bacteria, all culled from a database that included 15,000 of these images, that had been collected by the Jensen laboratory. (This technique provides 3D views of macromolecules and cells.)

The study's purpose in publishing what is essentially a catalog of these novel structures is to generate research into their structure and function, by sharing them with a broad audience of bacterial cell biologists, said Oikonomou.

During the 20th century, the interior of bacterial cells had been viewed as relatively simple, unlike the more complex eukaryotic cells of all multicellular organisms. "But in the last ~20 years, electron cryotomography has allowed us to visualize bacterial cells in an intact, fully-hydrated state, preserving their internal structures," said Oikonomou.

"We are learning that bacteria contain an organized battery of macromolecular machines that carry out the specialized functions that allow them to thrive in their diverse environments. Our work underscores the diversity and complexity of bacterial cells. And it reminds us that many structures still remain to be seen."

Understanding these newly observed structures will help microbiologists understand pathogens, such as Vibrio cholerae, the causative agent of cholera, and carcinogenic bacteria, such as Helicobacter pylori, as well as environmentally important species, such as Azospirillum brasilense, said Oikonomou. The latter is an important player in the nitrogen cycle, as it helps circulate this ecologically critical element.

Thus, the research is likely to lead to improvements in medicine, environmental science, and multiple additional fields where bacteria play a critical role.

###

The American Society for Microbiology is the largest single life science society, composed of over 50,000 scientists and health professionals. ASM's mission is to promote and advance the microbial sciences.

ASM advances the microbial sciences through conferences, publications, certifications and educational opportunities. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to diverse audiences

Media Contact

Aleea Khan
[email protected]
202-942-9365
@ASMnewsroom

http://www.asm.org

http://dx.doi.org/10.1128/JB.00100-17

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Ants vs. Bumblebees: A Battle with No Victors

Ants vs. Bumblebees: A Battle with No Victors

November 13, 2025
Mapping Guanidinoacetic Acid’s Tissue-Specific Effects in Cattle

Mapping Guanidinoacetic Acid’s Tissue-Specific Effects in Cattle

November 13, 2025

Phase 3 Study Confirms Strong Safety and Immunogenicity of EuTYPH-C Inj.® Multi-Dose

November 13, 2025

Iain Couzin Named a “Highly Cited Researcher” for 2025

November 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    317 shares
    Share 127 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    209 shares
    Share 84 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    141 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1306 shares
    Share 522 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Study Reveals Cellular Protein FGD3 Enhances Effectiveness of Breast Cancer Chemotherapy and Immunotherapy

Groundbreaking High-Precision Measurement of Potential Dynamics Achieved in Reactor-Grade Fusion Plasma

Revolutionary Nanoplatforms Combine Ferroptosis and Immunotherapy: Innovative Engineering Tactics for Tumor Microenvironment Transformation and Enhanced Treatment Efficacy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.