• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Researchers discover key to long-lasting malaria immunity and potential vaccine targets

Bioengineer by Bioengineer
November 7, 2016
in Science
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

HOUSTON-(Nov. 7, 2016)-Houston Methodist researchers have discovered a set of immune proteins that facilitate long-lasting immunity against malaria. In a study recently published in Immunity (online Oct. 25), researchers reported that elevated production of specific proteins regulating the immune system within 24 hours of infection was required for a resilient and sustained anti-malaria immunity in mice.

"Nearly half a million people die from malaria every year," said Rongfu Wang, Ph.D., director of the Center for Inflammation & Epigenetics at Houston Methodist Research Institute. "This is in part due to the lack of an effective malaria vaccine and a limited understanding of the body's immune response during infection. We have identified the immune system pathways activated during infection and potential targets for a malaria vaccine."

Using mouse models, the research team led by Wang carefully dissected pathways in the immune system to identify sensors in the genes that recognize malaria DNA and RNA and activate interferon type I signaling following malaria infection. The increased production of interferon type I proteins within 24 hours of infection were essential for initial and long-term malaria immunity.

Current antimalarial drugs vary by country and are not 100 percent protective, according to the World Health Organization (WHO). The Centers for Disease Control reports that the malaria causing parasite, Plasmodium falciparum, has developed resistance to nearly all of the available antimalarial drugs, including chloroquine.

Wang hopes that his team's findings will help researchers understand how lethal malaria blocks type I interferon signaling and how regulating such signaling will aid in the development of effective anti-malaria vaccines for long-lasting malaria protection.

###

Co-authors of the study included Xiao Yu, Ph.D., Baowei Cai, Mingjun Wang, Ph.D., Peng Tan, Xilai Ding, Ph.D., Qingtian Li, Ph.D., Pinghua Liu, Ph.D., Changsheng Xing, Ph.D., Helen Y. Wang (Houston Methodist Research Institute), Jian Wu, Ph.D., Xin-zhuan Su, Ph.D. (National Institutes of Health), Jian Li, Ph.D., (School of Life Sciences, China).

The research was supported in part by the National Cancer Institute (R01CA101795), National Institute on Drug Abuse (DA030338), the National Institutes of Health and by the Division of Intramural Research at the National Institute of Allergy and Infectious Disease (NIAID).

To speak with Rongfu Whang, Ph.D., contact Patricia Akinfenwa, Ph.D., Houston Methodist, at 281.740.1402 or [email protected]. For more information about Houston Methodist, visit houstonmethodist.org. Follow us on Twitter and Facebook.

For more information: Cross-regulation of two type I interferon signaling pathways in plasmacytoid dendritic cells controls anti-malaria immunity and host mortality. Immunity DOI: 10.1016/j.immuni.2016.10.001. (Online October 25, 2016) X. Yu, B. Cai, M. Wang, P. Tan, X. Ding, J. Wu, Q. Li, P. Liu, C. Xing, H. Wang, X. Su and R. Wang.

Media Contact

Patricia Akinfenwa, Ph.D.
[email protected]
281-740-1402
@MethodistHosp

http://methodisthealth.com

Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

F. Uniseptata Pigment Boosts Microbial Fuel Cell Power

Ultra-Precise Microfiber Thermometer for Hairy Skin

Adolescent Psychedelic Use Linked to Personality Traits

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.