• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers discover a key cause of energy loss in spintronic materials

Bioengineer by Bioengineer
June 14, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Study could help engineers build more efficient magnetic materials for computers

IMAGE

Credit: Bill Peria, University of Minnesota

A study led by University of Minnesota Twin Cities researchers uncovered a property of magnetic materials that will allow engineers to develop more efficient spintronic devices in the future. Spintronics focuses on using the magnetic “spin” property of electrons instead of their charge, which improves the speed and efficiency of devices used for computing and data storage.

The research is published in Physical Review B, a peer-reviewed scientific journal published by the American Physical Society.

One of the major roadblocks in developing better spintronic devices is an effect called “damping,” in which the magnetic energy essentially leaks out of the materials, causing them to be less efficient. Traditionally, scientists have blamed this property on the interaction between the spin of the electron and its motion. However, the University of Minnesota-led team has proven that there is another factor–magnetoelastic coupling, which is the interaction between electron spin, or magnetism, and sound particles.

“Our work doesn’t say that [the original theory] is wrong, it just says that that’s only part of the story,” explained Bill Peria, lead author of the study and a Ph.D. student in the University of Minnesota’s School of Physics and Astronomy. “We were able to show that in these magnetic materials, we do see that behavior, but it’s actually only a relatively minor fraction of the entire damping. There’s also this other mechanism by which the magnetism can be damped that is not usually considered.”

The researchers used a technique called ferromagnetic resonance, which measures how much magnetic energy is released or leaked. In order to understand the phenomenon, they had to perform this technique at multiple temperatures, ranging from room temperature to 5 Kelvin, just five degrees above absolute zero and the equivalent of about -450 degrees Fahrenheit.

The study’s findings provide a more holistic picture of what causes damping. This will allow engineers to develop magnetic materials with “ultralow” damping that are more energy efficient, ultimately leading to higher quality computers of the future.

“We care about low damping because we, along with our collaborators, are trying to make devices in which magnetic excitations can propagate over long distances,” said Paul Crowell, senior author of the paper and a professor in the University’s School of Physics and Astronomy. “We are trying to build the ‘wires’ in which magnetic signals can propagate across a chip without losing their strength.”

###

In addition to Peria and Crowell, the research team included University of Maryland researchers Ichiro Takeuchi (professor), Xinjun Wang (postdoctoral researcher), and Heshan Yu (Ph.D. student); and Seunghun Lee, a professor of physics at Pukyong National University in Busan, South Korea.

The research was supported by the University of Minnesota’s Spintronic Materials for Advanced Information Technologies (SMART) center, which is funded by nCORE, a Semiconductor Research Corporation program sponsored by the National Institute of Standards and Technology.

Media Contact
Katie Ousley
[email protected]

Original Source

https://twin-cities.umn.edu/news-events/researchers-discover-key-cause-energy-loss-spintronic-materials

Related Journal Article

http://dx.doi.org/10.1103/PhysRevB.103.L220403

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Aphid’s Long Proboscis Defends Against Ant Predators

Synthetic MRI Reveals Brain Changes in Parkinson’s Types

New Middle Jurassic Bittacidae Species Reveal Wing Diversity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.