• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers devise new way to discern what microbes eat

Bioengineer by Bioengineer
May 30, 2018
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Christian Lott

A new technique devised by researchers from North Carolina State University and the University of Calgary provides a more in-depth look at the metabolism and physiology within microbial communities – the microscopic life such as bacteria, viruses and other tiny forms of life within our bodies and throughout nature. Specifically, the new technique provides a more direct way to determine what food source, or substrate, a certain microbe has consumed.

The researchers use a mass spectrometer to measure with very high accuracy the mass of molecules derived from the microbes in a community. Then they use a newly developed software program that allows them to link microbes with their substrates.

The basis for connecting microbe and substrate are so-called carbon stable isotope ratios – the ratios between naturally occurring forms of carbon with different masses. Nature contains both carbon-12, the most abundant form, and carbon-13, which has one more neutron than carbon-12. Each material has a very specific ratio of these two isotopes, which essentially can be used as the fingerprint or signature of the material. The new algorithm links the carbon isotope ratios of the substrates that are available to microbes in a given environment to the ratios found in the microbes themselves.

Manuel Kleiner, an NC State assistant professor in the Department of Plant and Microbial Biology and corresponding author of a paper that reports the research, says that understanding microbial communities is necessary to better comprehend animal and plant health and disease, as well as important environmental processes such as decomposition of organic matter and nutrient cycling in soils and oceans.

"Our method is based on the concept that you are what you eat," Kleiner said. "If there is a food source with a specific isotopic signature and we find a microbe with that same specific isotopic signature, we can make the connection between the two. A similar technique is actually used by archeological anthropologists, who can determine the type of diet a person ate by analyzing isotope ratios from hair or bone fragments."

Human hair is crucial for the technique to work. Kleiner surprised his hairdresser by bagging his hair after a haircut.

"We have to correct for a certain error occurring during mass spectrometry by using a calibration standard. As it turns out, human hair is an excellent material to calibrate our instrument," Kleiner said.

To test the new algorithm, the researchers took 20 pure culture samples and showed that the software provided measurements consistent with mass spectrometry standards. The researchers also put together complex samples with different microorganisms and tested for individual signatures from different species within the complex community. Finally, the researchers studied a gutless marine worm that hosts a number of bacteria and used the software to test the metabolism of this symbiotic relationship.

Kleiner added that all the data from the study is publicly available, so other researchers can test and utilize the new software.

###

The study appears in Proceedings of the National Academy of Sciences. Xiaoli Dong, Erin Thorson, Tjorven Hinzke and Marc Strous, all from the University of Calgary, co-authored the paper, along with Juliane Wippler from the Max Planck Institute for Marine Microbiology. The study was supported by the NC State Chancellor's Faculty Excellence Program, the Campus Alberta Innovation Chair Program and the Canadian Foundation for Innovation.

Note to editors: An abstract of the paper follows.

"Metaproteomics method to determine carbon sources and assimilation pathways of species in microbial communities"

Authors: Manuel Kleiner, North Carolina State University; Juliane Wippler, Max Planck Institute for Marine Microbiology; Xiaoli Dong, Tjorven Hinzke, Erin Thorson, Bernhard Mayer, Marc Strous, University of Calgary

Published: May 29, 2018 in Proceedings of the National Academy of Sciences

DOI: 10.1073/pnas.1722325115

Abstract: Measurements of stable carbon isotope ratios (13C) are widely used in biology to address questions regarding food sources and metabolic pathways used by organisms. The analysis of these so-called stable isotope fingerprints (SIFs) for microbes involved in biogeochemical cycling and microbiota of plants and animals has led to major discoveries in environmental microbiology. Currently, obtaining SIFs for microbial communities is challenging as the available methods either only provide low taxonomic resolution, such as the use of lipid biomarkers, or are limited in throughput, such as nanoscale secondary ion MS imaging of single cells. Here we present "direct protein-SIF" and the Calis-p software package (https://sourceforge.net/projects/calis-p/), which enable high-throughput measurements of accurate 13C values for individual species within a microbial community. We benchmark the method using 20 pure culture microorganisms and show that the method reproducibly provides SIF values consistent with gold-standard bulk measurements performed with an isotope ratio mass spectrometer. Using mock community samples, we demonstrate that SIF values can also be obtained for individual species within a microbial community. Finally, a case study of an obligate bacteria-animal symbiosis shows that direct protein-SIF confirms previous physiological hypotheses and can provide unexpected insights into the symbionts' metabolism. This confirms the usefulness of this approach to accurately determine 13C values for different species in microbial community samples.

Media Contact

Manuel Kleiner
[email protected]
919-515-3792
@NCStateNews

Why Not Us?

Original Source

https://news.ncsu.edu/2018/05/what-microbes-eat/ http://dx.doi.org/10.1073/pnas.1722325115

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Navigating Shadows: Treating Anorexia and C-PTSD

Curcuma longa Nanocomposites Combat Drug-Resistant Pathogens

Preoperative BMI Influences Outcomes in Infective Endocarditis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.