• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers developed an AI-based method to replace chemical staining of tissue

Bioengineer by Bioengineer
April 14, 2023
in Biology
Reading Time: 4 mins read
0
An example of virtual staining of tissue.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Eastern Finland, the University of Turku, and Tampere University have developed an artificial intelligence-based method for virtual staining of histopathological tissue samples as a part of the Nordic ABCAP consortium. Chemical staining has been the cornerstone of studying histopathology for more than a century and is widely applied in, for example, cancer diagnostics.

An example of virtual staining of tissue.

Credit: Pekka Ruusuvuori

Researchers from the University of Eastern Finland, the University of Turku, and Tampere University have developed an artificial intelligence-based method for virtual staining of histopathological tissue samples as a part of the Nordic ABCAP consortium. Chemical staining has been the cornerstone of studying histopathology for more than a century and is widely applied in, for example, cancer diagnostics.

“Chemical staining makes the morphology of the almost transparent, low-contrast tissue sections visible. Without it, analysing tissue morphology is almost impossible for human vision. Chemical staining is irreversible, and in most cases, it prevents the use of the same sample for other experiments or measurements,” says University Researcher and Vice Director of the Institute of Biomedicine at the University of Eastern Finland Leena Latonen, who led the experimental part of the study.

The artificial intelligence method developed in this study produces computational images that very closely resemble those produced by the actual chemical staining process. This virtually stained image can then be used for inspecting the morphology of the tissues. Virtual staining reduces both the chemical burden and manual work needed for sample processing while also enabling the use of the tissue for other purposes than the staining itself.

The strength of the proposed virtual staining method is that it requires no special hardware or infrastructure beyond a regular light microscopy and a suitable computer.

“The results are very widely applicable. There are plenty of topics for follow-up research, and the computational methods can still be improved. However, we can already envision several application areas where virtual staining can have a major impact in histopathology,” says Associate Professor Pekka Ruusuvuori from the University of Turku, who led the computational part of the study.

Ground-breaking research with international funding

One of the key factors enabling the study was the consortium funding obtained from the ERAPerMed joint transnational call. The ABCAP consortium consists of Nordic research groups developing artificial intelligence-based diagnostics of breast cancer towards personalised medicine and is funded by ERAPerMed, Nordic Cancer Union and the Academy of Finland. Both Latonen and Ruusuvuori lead their own subprojects.

“This research is truly cross-disciplinary. Without consortium funding, it would be very difficult to find enough resources for both the experimental laboratory work and the computational effort to enable studies like this,” acknowledge Ruusuvuori and Latonen.

This cross-disciplinary research is based on expertise in tissue biology, histological processes, bioimage informatics and artificial intelligence. The first part of the two-phase study focused on optimising the tissue sample processing and imaging steps, and was carried out by Doctoral Researcher Sonja Koivukoski from the University of Eastern Finland. Systematic assessment of histological feasibility was a unique component in the study.

“Development of computational methods using artificial intelligence often lacks proper assessment of the feasibility from the perspective of the end user. This may lead to methods being developed and published but eventually not really used in practice. Therefore, it is especially important to combine both computational and domain-based knowledge already in the development phase, as was done in our study,” state Latonen and Koivukoski.

Great potential of computational methods

Deep neural networks learning form large volumes of data have rapidly transformed the field of biomedical image analysis. In addition to traditional image analysis tasks, such as image interpretation, these methods are also well suited for image-to-image transforms. Virtual staining is an example of such a task, as was successfully shown in the two published parts of the work. The second part focused on optimising virtual staining based on generative adversarial neural networks, with Doctoral Researcher Umair Khan from the University of Turku as the lead developer.

“Deep neural networks are capable of performing at a level we were not able to imagine a while ago. Artificial intelligence-based virtual staining can have a major impact towards more efficient sample processing in histopathology,” says Khan.

In addition to the artificial intelligence algorithms, the key to success was the availability of high-performance computing services through CSC.

“In Finland, we have an excellent infrastructure for parallel high-performance computing. Computationally intensive research like this would not be possible without the capacity provided by CSC,” says Ruusuvuori.

The results of the study were published in two international peer-reviewed journals, Laboratory Investigation and Patterns.



Journal

Laboratory Investigation

DOI

10.1016/j.labinv.2023.100070

Article Title

Unstained tissue imaging and virtual hematoxylin and eosin staining of histological whole slide images

Article Publication Date

20-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unlocking Pacific Oyster Germ Cell Development Mysteries

October 24, 2025
blank

New Study Validates Effectiveness of DEI Programs: Research-Backed Defense Published Today

October 23, 2025

Adrenergic Receptors: Evolution in Pacific Oysters Uncovered

October 23, 2025

New Study Reveals Origins of Urban Human-Biting Mosquito and Explains Rise in West Nile Virus Transmission from Birds to Humans

October 23, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1278 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    181 shares
    Share 72 Tweet 45
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Solvents for Lycopene Recovery Efficiency

Leaf Position Effects on Isodon rubescens Photosynthesis

Silencing SOX2OT Lowers Lung Cancer Cell Aggressiveness

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.