• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers developed a new metamaterial that can detect the order of external operations

Bioengineer by Bioengineer
June 4, 2024
in Chemistry
Reading Time: 3 mins read
0
The Mechanical Metamaterial
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Tel Aviv University and Los Alamos National Laboratory have developed a novel mechanical metamaterial that remembers the order of actions performed on it, much like a computer following a sequence of instructions. Unlike ordinary materials that respond in the same way to a sequence of external manipulations regardless of their order, the new metamaterial – named ‘Chaco’ after the archaeological site of Chaco Canyon in New Mexico – exhibits history-dependent behavior, thus opening a pathway to exciting applications in memory storage, robotics, and even mechanical computing. The research was led by Chaviva Sirote-Katz, Dor Shohat, Dr. Carl Merrigan, Prof. Yoav Lahini and Prof. Yair Shokef from Tel Aviv University, and Dr. Cristiano Nisoli from Los Alamos National Laboratory.

The Mechanical Metamaterial

Credit: Tel Aviv University

Researchers from Tel Aviv University and Los Alamos National Laboratory have developed a novel mechanical metamaterial that remembers the order of actions performed on it, much like a computer following a sequence of instructions. Unlike ordinary materials that respond in the same way to a sequence of external manipulations regardless of their order, the new metamaterial – named ‘Chaco’ after the archaeological site of Chaco Canyon in New Mexico – exhibits history-dependent behavior, thus opening a pathway to exciting applications in memory storage, robotics, and even mechanical computing. The research was led by Chaviva Sirote-Katz, Dor Shohat, Dr. Carl Merrigan, Prof. Yoav Lahini and Prof. Yair Shokef from Tel Aviv University, and Dr. Cristiano Nisoli from Los Alamos National Laboratory.

 

Video describing the research: https://youtu.be/eaw54ph6xbo

 

A metamaterial is a designed structure made of building blocks that are much larger than atoms or molecules. The metamaterial’s physical properties are set mainly by the spatial arrangement of these blocks. This research focuses on a mechanical metamaterial which is comprised of an array of flexible beams that easily bend under compression. To obtain unique properties, the researchers built a metamaterial with innate frustration – namely with geometric arrangement of the beams that does not allow all beams to simultaneously respond to external pressure in the way that each beam would like.

 

“This material is like a mechanical memory storage device that can remember a sequence of inputs,” explains Dor Shohat, a Ph.D. student at Tel Aviv University who took part in the research. “Each of its mechanical building blocks has two stable states, just like a single bit of memory.”

 

The secret behind Chaco’s memory lies in its unique design inspired by the concept of frustration found in magnetic systems, which are known for their memory properties. Similar to how geometric frustration can prevent magnets from reaching a simple, ordered state, Chaco’s building blocks are arranged in a way that prevents them from easily settling into an ordered, low-energy configuration. This controlled frustration creates a multitude of possible states a property which allows the material to remember the sequence of actions it has experienced.

 

“By carefully designing the geometry of the material, we can control the way it responds to external forces,” adds Chaviva Sirote-Katz, another Ph.D. student involved in the research. “This allows us to create disorder and complex behaviors in a simple, ordered structure.”

 

Chaco’s ability to recognize sequences of actions is based on its non-Abelian nature, meaning the order of operations matters. For example, flipping two units within the material in one order may lead to a different final state than flipping them in the reverse order. This sensitivity to history allowed the researchers to encode information in the sequence of actions and later retrieve it by simply observing the final state of the material.

 

The study, published in Nature Communications, effectively links the realms of magnetism and mechanics. As magnetic materials exhibit a manifold of exotic behaviors generally not found in mechanical ones, the design recipe behind Chaco offers transportable novel design principles for mechanical materials with remarkable properties and functionalities. The research team posits that developing these principles will enable creating smart materials with inherent memory and an ability to perform computations.

 

Link to the scientific article: https://www.nature.com/articles/s41467-024-47780-w

 



Journal

Nature Communications

DOI

10.1038/s41467-024-47780-w

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1295 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights on Eosinophilic Granulomatosis with Polyangiitis: A Podcast

Boosting Lettuce Yields with Steel Slag Compost Teas

Comparing Immune Responses: Rituximab vs. Obinutuzumab in Follicular Lymphoma

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.