• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Researchers develop techniques to track the activity of a potent cancer gene

Bioengineer by Bioengineer
March 1, 2019
in Science
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the National Cancer Institute use novel tools to reveal that cancer gene MYC causes global changes in gene activation, with subtle differences between individual cells

IMAGE

Credit: Larson Lab

BALTIMORE, MD – MYC is one of the most potent cancer genes, contributing to almost every kind of cancer–yet it is still not known how it causes tumors to form. Though higher levels of MYC are present in a wide range of tumor types, MYC alone does not usually lead to tumors. Simona Patange, a Ph.D. candidate in biophysics with the UMD-NCI Partnership for Integrative Cancer Research in Daniel Larson’s lab at the National Cancer Institute, is using novel tools to track MYC and its activity in individual cells. Patange will present their latest developments at the 63rd Biophysical Society Annual Meeting, to be held March 2 – 6, 2019 in Baltimore, Maryland.

MYC is a transcription factor, meaning it activates other genes leading them to transcribe more RNA that drives other cell processes, including growth and division. For a long time it was assumed that MYC turned on a set of target genes that lead to cancer. However, in recent years, scientists learned that all genes are responsive to MYC.

“MYC is like a volume knob for gene transcription–it doesn’t turn genes on, but it does turn up the activity of genes that are already active,” Larson explained.

To see how MYC’s changes in gene expression might lead to tumors, Patange and colleagues employed recently-developed imaging techniques to look at the RNA produced from gene transcription in individual cells. They noticed that cells with extra MYC had a global increase in RNA, and also that there were subtle differences in gene transcription between cells.

“The fact that MYC allows more gene expression and can lead to minute differences in RNA levels between cells might allow an individual cell to go down a path towards cancer,” Patange said.

One difficulty with studying MYC is that it’s always working to turn on genes, so it’s hard to decipher if it has a preference for certain genes or to know how much RNA message is transcribed from those genes. To address that challenge, Patange and colleagues engineered a version of MYC that uses light to control its physical location in the cell, and has oncogenic capacity like normal MYC. Now they will be able to control when MYC enters and exits the nucleus and see what genes immediately respond, and how much message those genes go on to produce.

“Now we have a system where we can precisely look at how genes are being transcribed in response to MYC, that’s a major advance,” Larson said.

They hope this new toolkit will allow them to reveal precisely how MYC drives cancer.

###

The Biophysical Society, founded in 1958, is a professional, scientific Society established to encourage development and dissemination of knowledge in biophysics. The Society promotes growth in this expanding field through its annual meeting, monthly journal, and committee and outreach activities. Its 9,000 members are located throughout the U.S. and the world, where they teach and conduct research in colleges, universities, laboratories and government agencies. http://www.biophysics.org.

Media Contact
Sean Winkler
[email protected]

Original Source

https://www.biophysics.org/news-room/science-at-bps-2019-researchers-develop-techniques-to-track-the-activity-of-a-potent-cancer-gene-in-individual-cells

Tags: BiologyBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringcancerGene TherapyGenesGenetics
Share14Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    51 shares
    Share 20 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advanced Pressure-Velocity Patch Enhances Flight Detection

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.