• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers develop novel 3D printing technique to engineer biofilms

Bioengineer by Bioengineer
December 2, 2021
in Biology
Reading Time: 2 mins read
0
Graduate student with 3D printing materials to synthetically engineer biofilms
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Anne S. Meyer, an associate professor of biology at the University of Rochester, and her collaborators at Delft University of Technology in the Netherlands, recently developed a 3D printing technique to engineer and study biofilms—three-dimensional communities of microorganisms, such as bacteria, that adhere to surfaces. The research provides important information for creating synthetic materials and in developing drugs to fight the negative effects of biofilms.

Graduate student with 3D printing materials to synthetically engineer biofilms

Credit: University of Rochester photo / J. Adam Fenster

Anne S. Meyer, an associate professor of biology at the University of Rochester, and her collaborators at Delft University of Technology in the Netherlands, recently developed a 3D printing technique to engineer and study biofilms—three-dimensional communities of microorganisms, such as bacteria, that adhere to surfaces. The research provides important information for creating synthetic materials and in developing drugs to fight the negative effects of biofilms.

Biofilms can be both harmful and beneficial to humans: they can coat the surfaces of materials and objects, including medical devices, and cause infections, and they are resistant to many drugs and disinfectants. However, biofilms are able to degrade toxic chemicals and environmental pollutants, making them useful in areas such as wastewater treatment.

In their latest research, published in the journal ACS Synthetic Biology, Meyer and her colleagues show that engineered biofilms can behave like natural ones. The researchers developed a 3D printing technique that allows them to synthetically engineer and study biofilms made of Escherichia coli (E. coli) bacteria. The technique will allow researchers to better study the properties of biofilms so they can harness their beneficial aspects and combat their harmful effects.

“This paper shows that our engineered biofilms can behave like native biofilms in many ways—including displaying emergent drug resistance—making them good model systems for anti-biofilm drug development,” Meyer says.

The work is the latest in a series of research efforts led by Meyer’s lab to develop synthetic materials that mimic nature. The materials have a variety of applications in the energy, medical, technology, and fashion sectors. The Meyer group has used bacteria to develop artificial nacre and graphene and has additionally developed other 3D printing techniques, including a novel bioprinting technique to print algae into living, photosynthetic materials.



Journal

ACS Synthetic Biology

DOI

10.1021/acssynbio.1c00290

Article Title

Emergent Biological Endurance Depends on Extracellular Matrix Composition of Three-Dimensionally Printed Escherichia coli Biofilms

Article Publication Date

15-Oct-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Prophages in Enterococcus faecium: Diversity & Resistance

October 29, 2025
“‘Broken’ Genes Key to Marsupial Fur Color Variation”

“‘Broken’ Genes Key to Marsupial Fur Color Variation”

October 28, 2025

Gymnema sylvestre’s Antifungal Compounds and Optimization

October 28, 2025

Sorghum Polyamine Oxidase Genes: Drought Resilience Insights

October 28, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1289 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    199 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Optimizing Ovarian Cancer Treatment with CT Radiomics

Five-Year Study on Pediatric Busulfan Drug Monitoring

Hospitalization Before Hemodialysis Linked to Increased Mortality

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.