• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers develop new strategy to target KRAS mutant cancer

Bioengineer by Bioengineer
September 14, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Although KRAS is one of the major oncogenes associated with aggressive cancers, drugs designed to block KRAS function have not been able to halt cancer progression in a clinical setting. Until now, KRAS has remained infamously "undruggable."

In a new study, published this month in Cancer Discovery, University of California San Diego School of Medicine researchers report that approximately half of lung and pancreatic cancers that originate with a KRAS mutation become addicted to the gene as they progress. By understanding the mechanism that causes these cancers to remain dependent on KRAS for survival, they were able to identify a drug capable of targeting it.

"Certain tumors use mutant KRAS to boost their survival by helping them take up nutrients and process toxins, causing them to become addicted to KRAS," said David Cheresh, PhD, UC San Diego School of Medicine Distinguished Professor of Pathology and senior author of the paper. "Other tumors that do not use KRAS in this way can do without it, even though it is needed to initiate cancer. Based on a biomarker we discovered, we now know which cancers will be addicted and which will not."

There are currently no effective treatments for the 95 percent of pancreatic cancers and up to 30 percent of non-small cell lung cancers with KRAS mutations. The team of researchers found that binding of the protein Galectin-3 to the cell surface receptor integrin avb3 amplifies the advantages driven by mutant KRAS, creating a unique vulnerability that could be targeted with an existing drug.

Cheresh and team found that a Galectin-3 inhibitor called GCS-100 was able to kill KRAS-addicted cells in vitro and halt progression of KRAS-addicted tumors in mouse models. Importantly, they discovered that a tumor would respond to the drug only if it was positive for integrin αvb3.

"This may be among the first approaches to successfully target KRAS mutant cancers. Previously, we didn't understand why only certain KRAS-initiated cancers would remain addicted to the mutation," said Cheresh, associate director of innovation and industry alliances at UC San Diego Moores Cancer Center. "Now we understand that expression of integrin αvb3 creates the addiction to KRAS. And it's those addicted cancers that we feel will be most susceptible to targeting this pathway using Galectin-3 inhibitors."

Interrupting the origins of this pathway may be more promising than attempting to block individual KRAS-driven functions, wrote the researchers. Considering that KRAS-addicted cancers were found to be highly sensitive to Galectin-3 inhibitors in preclinical models, the next step would be to clinically test a currently available Galectin-3 inhibitor in patients whose tumors express both mutant KRAS and αvb3, a companion biomarker that predicts response.

"KRAS mutations impact a large number of patients with cancer. If a patient has a KRAS mutant cancer, and the cancer is also positive for αvb3, then the patient could be a candidate for a therapeutic that targets this pathway," said Cheresh. "Our work suggests a personalized medicine approach to identify and exploit KRAS addicted tumors, providing a new opportunity to halt the progression of tumors that currently have no viable targeted therapeutic options."

###

Co-authors include: Maria F. Camargo, Hiromi I. Wettersten, Shumei Kato, Jay S. Desgrosellier, Tami von Schalscha, Kathryn C. Elliott, Erika Cosset, Jacqueline Lesperance, Sara M. Weis, UC San Diego; Laetitia Seguin, UC San Diego and University of Nice Sophia Antipolis.

Media Contact

Yadira Galindo
[email protected]
858-249-0456
@UCSanDiego

http://www.ucsd.edu

http://dx.doi.org/10.1158/2159-8290.CD-17-0539

Share12Tweet8Share2ShareShareShare2

Related Posts

Tirzepatide Enhances Blood Sugar Regulation in Adolescents with Type 2 Diabetes Unresponsive to Current Treatments (SURPASS-PEDS Trial)

September 18, 2025
Emerging Research Links Microplastics to Potential Risks for Bone Health

Emerging Research Links Microplastics to Potential Risks for Bone Health

September 18, 2025

Early Universe Galaxies Unveil Hidden Dark Matter Maps

September 18, 2025

Texas A&M Researchers Develop Innovative Cryopreservation Technique to Stop Organ Cracking

September 18, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tirzepatide Enhances Blood Sugar Regulation in Adolescents with Type 2 Diabetes Unresponsive to Current Treatments (SURPASS-PEDS Trial)

Emerging Research Links Microplastics to Potential Risks for Bone Health

Early Universe Galaxies Unveil Hidden Dark Matter Maps

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.