• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers develop a new way to study key biological processes

Bioengineer by Bioengineer
April 4, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of scientists at The University of East Anglia (UEA) has developed a novel way to obtain previously inaccessible insight into the functions of a group of essential proteins.

Many proteins contain a cofactor — an additional component that is often crucial for the protein's function. Iron-sulfur clusters are protein cofactors that play essential roles in a wide range of processes including respiration, photosynthesis, and DNA replication/repair.

Iron-sulfur cluster proteins also play key roles in sensing environmental change, enabling bacteria to mount an adaptive response. This is crucial for their survival, for example in pathogens trying to evade the human immune system. Iron-sulfur clusters are reactive and fragile, making them difficult to work with, and their functional properties are often complex.

UEA researchers have developed a new method to study these delicate iron-sulfur clusters based on mass spectrometry — an advanced technique that can identify proteins by measuring their mass with great accuracy.

In common life science applications of mass spectrometry, the proteins being studied are in an unfolded state and any information on cofactors is lost. The team has developed ways to keep iron-sulfur cluster proteins in a folded state with the cluster bound during the mass spectrometry experiment, and to monitor their reactivity in real time.

FNR is an iron-sulfur cluster-containing protein which functions as an oxygen (O2) sensor. It is key for the ability of bacteria such as E. coli to 'breathe' in the absence of O2 and it undergoes a complex cluster conversion process when O2 is present. This abolishes its ability to bind DNA enabling it to regulate the switching on of enzymes which utilise O2 for respiration and to switch off those that can't.

Using their mass spectrometry approach, the researchers were able to detect for the first time all of the reaction components simultaneously, providing unprecedented details of the conversion process.

Prof Nick Le Brun from UEA's School of Chemistry, who led the team, said: "This work demonstrates the exciting potential of mass spectrometry to provide a level of insight into this common cofactor that was previously not possible.

"The ability to 'see' and clearly distinguish all reacting species in this process at the same time is hugely advantageous. Given the importance and ubiquitous nature of iron-sulfur cluster proteins, the methodology we have developed promises to have widespread application across further research into systems involving interactions and reactions of protein cofactors, particularly with small molecules like O2, nitric oxide, nitrogen and hydrogen."

###

The study was funded by the Biotechnology and Biosciences Research Council (BBSRC).

'Mass spectrometric identi?cation of intermediates in the O2 driven [4Fe-4S] to [2Fe-2S] cluster conversion in FNR' is published in the journal Proceedings of the National Academy of the USA – DOI: 10.1073/pnas.1620987114 – http://www.pnas.org/content/early/2017/03/31/1620987114.abstract

Media Contact

Lucy Clegg
[email protected]
44-016-035-93496
@uniofeastanglia

http://comm.uea.ac.uk/press

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Novel ADC Targets Fucosyl-GM1 in Lung Cancer

September 1, 2025
blank

AI-Powered Adaptive Tutoring for Moodle: A Breakthrough

September 1, 2025

Ethiopia’s Electronic Health System: Status and Opportunities

September 1, 2025

Impact of Fiber Types on Turfgrass Racing Surfaces

September 1, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Novel ADC Targets Fucosyl-GM1 in Lung Cancer

AI-Powered Adaptive Tutoring for Moodle: A Breakthrough

Ethiopia’s Electronic Health System: Status and Opportunities

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.