• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers develop a new, efficient tin monosulfide solar cell prototype

Bioengineer by Bioengineer
March 10, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Tohoku University

A team of researchers from Tohoku University have created a tin monosulfide (SnS) solar cell that boasts attractive performance levels, promoting affordable and clean energy and moving society closer to achieving the UN’s sustainable development goals.

Their results were published in the journal Solar RRL on February 25, 2021.

Current thin film solar cells often use cadmium telluride and copper indium gallium selenide to induce the photovoltaic effect. However, these materials contain rare and toxic elements. In contrast, tin and sulfur are abundant, easy to refine and non-toxic.

The key to high efficiency SnS solar cells lies within the p-n homojunction. P-type SnS is easy to fabricate, but the same cannot be said of n-type SnS. The complexity of fabricating n-type SnS has stalled the manufacturing of the p-n homojunction for SnS solar cells.

However, the team, led by Sakiko Kawanishi and Issei Suzuki from Tohoku University’s Institute of Multidisciplinary Research for Advanced Materials, overcame this barrier and fabricated a p-n homojunction by using a large n-type SnS single crystals. The large crystals were grown using an original technique released in August 2020.

The newly created solar cell’s open circuit voltage, which contributes to the conversion efficiency, recorded 360 mV even with no device optimization.

“This is remarkable since this is only our first prototype, yet it still recorded the comparable open circuit voltage as previously reported heterojunction SnS-based devices,” said Kawanishi.

Although the conversion efficiency of the “first” device is still 1.4%, it is expected to surpass the best efficiency of the heterojunction devices (?5%) rapidly through device optimization.

Kawanishi adds, “Our group believes this significant first achievement further accelerates the future development for SnS solar cells’ practical application.”

###

Media Contact
Sakiko Kawanishi
[email protected]

Original Source

https://www.tohoku.ac.jp/en/press/new_tin_monosulfide_solar_cell_prototype.html

Related Journal Article

http://dx.doi.org/10.1002/solr.202000708

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

October 12, 2025
Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025

Wirth Named Fellow of the American Physical Society

October 10, 2025

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1222 shares
    Share 488 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Antioxidants’ Impact on Autism Treatment

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

New Global Burden of Disease Study Reveals Falling Mortality Rates Amid Rising Youth Deaths and Growing Health Inequities

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.