• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers describe novel immune syndrome

Bioengineer by Bioengineer
October 18, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Cardinez et al., 2018

Researchers from Australia and Japan have discovered a new human immunodeficiency syndrome in two patients on separate continents. The study, which will be published October 18 in the Journal of Experimental Medicine, reveals that a mutation in a gene called IKBKB disrupts the immune system, leading to excessive inflammation and the loss of both T and B white blood cells.

Genetic mutations can cause a wide variety of severe, inheritable immune deficiencies that begin at birth or in early childhood. But the causes of other, more sporadic, immune diseases, including milder immunodeficiencies that can develop later in life, remain poorly understood. A team of researchers led by Matthew C. Cook from Australian National University in Canberra and Hirokazu Kanegane from Tokyo Medical and Dental University analyzed a group of immunodeficient patients in Australia and Japan and identified two unrelated patients–one in each country–carrying an identical mutation in a gene called IKBKB.

Both patients seemed to have developed the mutation "de novo," rather than inheriting it from their parents. Their symptoms were slightly different, but they were both susceptible to recurrent infections and showed signs of excessive inflammation. Both patients had reduced numbers of antibody-producing B cells and two types of effector T cells that help the body fight off infections. However, the T cells that remained appeared to be more prone to activation.

The IKBKB gene encodes an enzyme called IKK2 that controls the development and activation of white blood cells by regulating the NF-kB cell signaling pathway. Mutations that inhibit IKK2 and NF-kB signaling are known to cause severe early onset immune deficiencies. But the mutation found in the two Australian and Japanese patients seems to result in a hyperactive form of IKK2 that increases NF-kB cell signaling.

To confirm that this mutation was responsible for the patients' symptoms, the researchers used CRISPR/Cas9 gene editing to create the same mutation in mice. These animals also showed an increase in IKK2 and NF-kB cell signaling and developed similar defects in their T and B cells.

"Our results show that a de novo mutation in human IKBKB increases the function of IKK2 and results in a combined immune deficiency syndrome affecting both T and B cells," Kanegane says.

"We were able to confirm this by engineering an equivalent mutation in mice," says Cook. "In future, this strategy should prove important for investigating therapeutic interventions for personalized therapy."

###

Cardinez et al. 2018. J. Exp. Med. http://jem.rupress.org/cgi/doi/10.1084/jem.20180639?PR

About the Journal of Experimental Medicine

The Journal of Experimental Medicine (JEM) features peer-reviewed research on immunology, cancer biology, stem cell biology, microbial pathogenesis, vascular biology, and neurobiology. All editorial decisions are made by research-active scientists in conjunction with in-house scientific editors. JEM makes all of its content free online no later than six months after publication. Established in 1896, JEM is published by Rockefeller University Press. For more information, visit jem.org.

Visit our Newsroom, and sign up for a weekly preview of articles to be published. Embargoed media alerts are for journalists only.

Follow JEM on Twitter at @JExpMed and @RockUPress.

Media Contact

Ben Short
[email protected]
@RockUPress

http://www.rupress.org/

Related Journal Article

http://dx.doi.org/10.1084/jem.20180639

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Reveals How Stress Hormones Silence Key Brain Genes via Chromatin-Bound RNAs

New Study Reveals How Stress Hormones Silence Key Brain Genes via Chromatin-Bound RNAs

November 4, 2025
blank

Glycolysis Gene Insights from Streptomyces coelicolor M145

November 4, 2025

New Study Uncovers Variation in Viral Risk Among Bat Species

November 3, 2025

16th International Congress on Skin Ageing & Challenges 2025: Pioneering Innovation, Strategic Approaches, and Translational Advances

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights into Drug-Facilitated Sexual Assault Cases

Pest Dynamics and Climate: Sustainable Solutions for Kagera Sugar

Globalizing Vignette Learning with Language Models

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.