• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Researchers demonstrate latest neurotechnologies at international conference

Bioengineer by Bioengineer
April 3, 2019
in Science
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Army photo by Janice Booker

Scientists and engineers met to collaborate on their latest research and demonstrate new technologies at the 9th International IEEE Engineering in Medicine and Biology Society conference on neural engineering, in San Francisco, California, March 19-23.

Leading academics in neurotechnology and bioengineering from around the world as well as representatives from major neurotechnology companies attended the conference.

Drs. Jonathan Touryan, David Hairston and Jean Vettel, all neuroscientists at the U.S. Army Combat Capabilities Development Command Army Research Laboratory, the Army’s corporate research laboratory also known as ARL, led a workshop on the future of real-world neuroscience and how neurotechnology could be used to augment innate human capabilities. This workshop was co-led by Professor Paul Sajda, director of the Laboratory for Intelligent Imaging and Neural Computing, Columbia University, New York, New York.

In addition to this workshop, Touryan and teammates from ARL presented results on a number of collaborative efforts and demonstrated cutting-edge capabilities in neural engineering to include the BrainFlight neurofeedback system.

“It is well known that our state of arousal — being stressed, fatigued, or calm — can significantly affect the Soldier’s ability to make optimal decisions, judgments and actions in real-world dynamic environments,” Touryan said. “BrainFlight is an approach and technology that uses online neurofeedback to modify an individual’s arousal
state to improve performance in a demanding sensory motor task, such as flying a helicopter or navigating a vehicle in suboptimal conditions.”

Touryan said the genesis of the program was from a Defense Advanced Research Projects Agency, or DARPA seedling effort to address pilot induced oscillations, or PIOs — a situation where pilots begin to overcorrect for aircraft pitch, leading to ever increasing oscillations that may result in catastrophic failure.

Columbia University developed a simulation environment to explore this phenomenon. After the initial seedling, this project was continued under the Cognition and Neuroergonomics Collaborative Technology Alliance, ARL’s extramural program in the neurosciences, or CaN CTA.

“The key observation was that very high arousal levels preceded these PIOs,” Touryan said. “Using neural decoding approaches that were developed under the CTA’s past collaborative efforts, Dr. Josef Faller at Columbia University was able to identify when participants were beginning to enter this dangerous performance state.”

He said Faller was able to continuously estimate the arousal level of the individual using both neural and physiological signals. When high levels of arousal were detected, the BrainFlight system provided a type of auditory feedback designed to calm and focus the operator and improve overall performance.

“This was a major project within the CaN CTA over the last several years and clearly demonstrates the usefulness of the neural decoding algorithms — algorithms that had been under development since the inception of the program,” Touryan said.

Faller recently joined ARL as a postdoctoral fellow working in the Future Soldier Technology Division and is eager to continue collaborating.

“We are excited about the substantial increase in performance our novice ‘pilots’ were able to achieve with this system,” Faller said. “Based on these encouraging results, we are eager to explore other ways how similar neural decoding algorithms can be used to improve human performance or treat mental conditions like post-traumatic stress disorder.”

The BrainFlight system originated at Columbia University and is now installed at APG and is expected to be used as a demonstration and development platform in coming years. Touryan explains what this means for future Army research.

“To keep you in the zone of maximum performance, your arousal needs to be at moderate levels, not so high that it pushes you over the edge, but still high enough to remain vigilant,” he said. “Future Soldier technology that monitors arousal during difficult tasks could be used to provide regulating feedback or enable assisting AI.”

Researchers at ARL and Columbia plan to use this technology in future research and development programs. Studying how neurofeedback can be used to regulate arousal and emotion for clinical conditions such as post-traumatic stress disorder, or PTSD is one example.

“We will continue to explore how online monitoring of arousal and cognitive control can inform human-autonomy teaming,” Touryan said. “When autonomous systems and humans work together in a high-stress situation, the autonomy could benefit from information regarding the human’s arousal state. For example, it could use this information to choose its tasks in a way that reduces its teammate’s arousal, pushing her or him into an ideal performance zone.”

###

The CCDC Army Research Laboratory (ARL) is an element of the U.S. Army Combat Capabilities Development Command. As the Army’s corporate research laboratory, ARL discovers, innovates and transitions science and technology to ensure dominant strategic land power. Through collaboration across the command’s core technical competencies, CCDC leads in the discovery, development and delivery of the technology-based capabilities required to make Soldiers more lethal to win our Nation’s wars and come home safely. CCDC is a major subordinate command of the U.S. Army Futures Command.

Media Contact
Joyce M. Conant
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.1817207116

Tags: Algorithms/ModelsCollaborationMemory/Cognitive ProcessesPerception/AwarenessResearch/DevelopmentResearchers/Scientists/AwardsRobotry/Artificial IntelligenceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

MARCO Drives Myeloid Suppressor Cell Differentiation, Immunity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.