• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers demonstrate chemically sensitive lidar method

Bioengineer by Bioengineer
September 21, 2022
in Chemistry
Reading Time: 3 mins read
0
Observations of surface displacements on NIR dye.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Rochester—Researchers have developed a new laser-based technique that can simultaneously perform lidar and remote chemical measurements. Lidar, which stands for light detection and ranging, uses a laser to measure distances, or ranges. Adding chemical information to lidar measurements could be useful for applications like remote chemical mapping, detecting trace amounts of chemicals, monitoring industrial processes and quality control.

Observations of surface displacements on NIR dye.

Credit: Nokia Bell Labs

Rochester—Researchers have developed a new laser-based technique that can simultaneously perform lidar and remote chemical measurements. Lidar, which stands for light detection and ranging, uses a laser to measure distances, or ranges. Adding chemical information to lidar measurements could be useful for applications like remote chemical mapping, detecting trace amounts of chemicals, monitoring industrial processes and quality control.

“By mapping and identifying the composition of the environment, we can augment human interactions and industrial processes of the future with multi-dimensional object information beyond just ranging and detection,” detailed Bibek R. Samanta, technical staff at Nokia Bell Labs.

Samanta from Nokia Bell Labs will present the research at the Frontiers in Optics + Laser Science Conference (FiO LS) meeting being held in Rochester, New York and online 17 – 20 October 2022. Samanta’s presentation is scheduled for Monday, 17 October 2022 October at 12:00 EDT (UTC – 04:00).

Combining methods

The new technique, which combines photothermal spectroscopy and lidar, resolves chemical information by detecting sub-nanometer surface deformations due to photothermal absorption of a pump laser. These photothermal effects are caused by intensity modulations of the pump beam.

The researchers used a swept-source laser as a probe beam to perform a lidar scan in a frequency-modulated continuous wave configuration. The pump beam was a wavelength-stabilized infrared laser diode laser modulated using a chopper wheel. Both beams were collimated, combined and focused on the same spot about 8 centimeters away. For this setup, the researchers estimated an axial resolution of about 150 microns in air and an imaging depth of about 30 centimeters.

The investigators tested their new approach by using a 3D printed transparent plastic block with 500-micron deep channels containing epoxy resin mixed with either a green acrylic color or a near-infrared (NIR) absorbing dye. They were able to observe surface displacements of 0.2 to 0.3 nm that resulted from photothermal absorption of the epoxy containing the NIR dye. This agreed with estimated values and was about an order of magnitude greater than the system’s baseline noise.

By scanning the sample laterally, the researchers created a chemically sensitive lidar scan that showed the location of the NIR dye but not the green acrylic resin. Although an infrared laser was used in this demonstration, other wavelengths could be used to identify other materials.

 “Using tunable laser systems and a fast-scanning integrated optical assembly, we plan on implementing spectroscopic identification of common household materials to create a 5D map of the environment,” Samanta further explains.

About FiO+LS

Frontiers in Optics + Laser Science will be presented in a hybrid conference format comprised of in-person and virtual participation options. The meeting unites Optica (formerly OSA) and American Physical Society (APS) communities for quality, cutting-edge presentations, fascinating invited speakers and a variety of special events. The exhibit features leading optics and photonics companies and technology products. More information at https://www.frontiersinoptics.com.

Media Inquiries
[email protected]

 



Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Dementia Care with Enhanced Activity Kits

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.