• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers decipher the mechanism by which the MAF protein promotes breast cancer metastasis

Bioengineer by Bioengineer
November 9, 2023
in Biology
Reading Time: 4 mins read
0
Researchers decipher the mechanism by which the MAF protein promotes breast cancer metastasis
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Barcelona, 9 November 2023 – Breast cancer is the most common form of cancer among women, with more than 2 million new cases diagnosed each year. In cases where the tumour remains localised in the breast, survival rates are remarkably high, at around 90%. However, the spread of cancer cells beyond breast tissue and the formation of metastases in other organs dramatically worsens the prognosis and poses significant challenges. Previous research has already linked the MAF protein to an increased risk of developing metastasis, but the reasons for this connection remained unclear.

Researchers decipher the mechanism by which the MAF protein promotes breast cancer metastasis

Credit: Alicia Llorente. IRB Barcelona

  • The MAF protein interacts with the estrogen receptor, alters its function, and promotes the spread of cancer.
  • The KDM1A enzyme plays a fundamental role in the epigenetic remodelling that facilitates the function of pro-metastatic genes.
  • The work carried out in Dr. Roger Gomis Lab at IRB Barcelona has been published in the journal Nature Cell Biology.

Barcelona, 9 November 2023 – Breast cancer is the most common form of cancer among women, with more than 2 million new cases diagnosed each year. In cases where the tumour remains localised in the breast, survival rates are remarkably high, at around 90%. However, the spread of cancer cells beyond breast tissue and the formation of metastases in other organs dramatically worsens the prognosis and poses significant challenges. Previous research has already linked the MAF protein to an increased risk of developing metastasis, but the reasons for this connection remained unclear.

A team from IRB Barcelona ​​led by ICREA researcher Dr. Roger Gomis has revealed the mechanism by which the MAF protein increases the risk of metastasis in breast cancer patients. This finding is a crucial step in understanding the molecular basis of metastasis and has relevant clinical implications for treatment.

The research team has detailed in the journal Nature Cell Biology how the MAF protein interacts with the estrogen receptor, a key element in the development of breast cancer, modifying its structure. This interaction leads to DNA restructuring, which allows the activation of genes that favour metastasis, particularly in response to estrogen. These findings imply that patients with high levels of MAF protein have a greater risk of developing metastasis.

This study opens up the possibility of preventing metastasis by impeding the activation of pro-metastatic through the inhibition of the KDM1A molecule, which is responsible for DNA restructuring. This offers new perspectives in the treatment of breast cancer. The study was carried out in cultured cells and animal models of the disease, and it was validated in patient samples.

The research has been supported by the “la Caixa” Foundation through the 2018 Health Call. The project has also received funding by the Spanish Association Against Cancer, the FERO Foundation, the BBVA Foundation and the Spanish Ministry of Science and Innovation. The project has also been supported by Mrs. Carme Segura Capellades, who donates generously to cancer research at IRB Barcelona.

 

Crucial discovery for young and premenopausal patients

Previous studies by the same laboratory had already established a connection between increased MAF protein levels and resistance to “bisphosphonate” treatment used to prevent breast cancer metastasis to bone.

The detection of high levels of MAF can therefore predict the risk of metastasis, as well as distinguish between breast cancer patients who may benefit from bisphosphonate treatment from those for whom this treatment is inappropriate. This information is particularly crucial for young patients. Treatments aimed at the site of bone metastasis can, in some cases, divert metastasis to other organs, which has a negative impact on the overall survival of patients.

“This finding is a critical step in understanding how breast cancer spreads and opens up new therapeutic options for the 20% of patients who cannot benefit from bisphosphonate treatment,” explains Dr. Gomis, head of the Growth Control and Cancer Metastasis laboratory at IRB Barcelona and also a group leader at the Cancer CIBER (CIBERONC).

 

The MAF Test: a diagnostic tool that is now available

The research carried out in Dr. Gomis’ lab has led to the development of the MAF Test, a predictive tool available for breast cancer patients. This diagnostic test has been developed by Inbiomotion, a spin-off from IRB Barcelona and ICREA founded in 2011, and is available in Spain through PALEX Medical.

The MAF Test allows the identification of breast cancer patients with a greater risk of developing metastasis and facilitates informed decisions by oncologists about the most appropriate treatment for each case.

 

A drug currently in clinical trials could benefit these patients

An inhibitor of the element that researchers have identified as key in the metastatic drift of breast cancer, namely the KDM1A protein, has already been identified and is currently in clinical trials to validate its effectiveness and safety. This inhibitor and related trials are independent of the findings published today. However, if this potential drug is confirmed to be effective, it could offer significant benefits for patients with elevated MAF levels by helping to prevent the development of metastases.

 

The first authors of the study are Dr. Alicia Llorente, who started this work during her doctoral studies, Dr. Teresa Blasco, who also signs as responsible for the publication, together with Dr. Gomis and Irene Espuny. All three work in Dr. Gomis‘ laboratory. The research was carried out in collaboration with the laboratories headed by Dr. Luciano Di Croce, at the Center for Genomic Regulation, Dr. Alexandra Avgustinova at IRB Barcelona and the Institut de Recerca Sant Joan de Deu, and Dr. Ingunn Holen, at the University of Sheffield. The study also involved the groups led by Dr. Antoni Riera and Dr. Freddy Monteiro (both at IRB Barcelona), and Dr. Mariona Graupera, at the Josep Carreras Leukemia Research Institute.



Journal

Nature Cell Biology

DOI

10.1038/s41556-023-01281-y

Article Publication Date

9-Nov-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

MeaB bZIP Factor Essential for Nitrosative Stress Response

MeaB bZIP Factor Essential for Nitrosative Stress Response

October 5, 2025
blank

Exploring Plastid Genome Traits in Saururaceae

October 5, 2025

Exploring Splicing Patterns in Medicinal Rheum Palmatum

October 5, 2025

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

October 5, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Psychological Resilience Mediates Care in Nursing Interns

MeaB bZIP Factor Essential for Nitrosative Stress Response

Revolutionizing Preterm Infant Care in Resource-Limited Settings

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.