• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers build a patch to help cardiac muscle beat more strongly after a heart attack

Bioengineer by Bioengineer
July 31, 2017
in Biology
Reading Time: 3 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Worcester Polytechnic Institute

A research team at Worcester Polytechnic Institute (WPI) has been awarded a $452,000 National Institutes of Health grant to bioengineer a patch to help cardiac muscle beat more strongly and efficiently after a heart attack. Work funded by the three-year grant centers on biopolymer microthreads–about the width of a human hair–that can be braided into cable-like structures that mimic human muscle fibers and other connective tissues.

The project is led by George Pins, PhD, associate professor of biomedical engineering at WPI, who has pioneered the development of biopolymer microthreads as a platform technology for a variety of wound-healing and tissue

"After a heart attack, scarring of the cardiac muscle limits the heart's ability to pump, a fundamental problem we are trying to address with this effort," Pins said. "We appreciate the NIH's support of our work and look forward to an intense three years of research and development."

According to the American Heart Association, cardiovascular diseases remain the leading cause of death globally, with some 500,000 new cases of heart failure diagnosed annually in the United States alone. Currently, there is no technology available that can restore contractile function to a scarred section of heart muscle, so developing a new approach to help strengthen hearts damaged by chronic disease or a heart attack remains a major public health objective.

Made primarily of fibrin, a naturally occurring human protein that forms blood clots to stop bleeding after injury, the biopolymer microthreads Pins is developing were first conceived as a potential tool for repairing torn anterior cruciate ligaments (ACL) in the knee. The versatile microthreads have since been adapted for use as biological scaffolds to deliver cells or protein therapies for wound healing and skeletal muscle regeneration, among other purposes.

In the new project, Pins and the team will embed a series of microthreads in a fibrin hydrogel to form a composite "patch" to replicate the structure of heart muscle. The threads will be seeded with induced pluripotent stem cells that have been engineered to become cardiac muscle cells. The design of the composite patch will be tested and refined in a variety of ways, including altering the diameter of the microthreads and the ways they are cross-linked together to form bundles. The goal is to optimize the structure of the patch so cardiac cells can align on the threads, propagate electrical signals along the threads, and contract together like healthy heart muscle. Eventually, the hope is the patch could be sutured directly onto a damaged heart to restore contractile function.

Pins will build the heart patch with multiple layers of the thread/hydrogel composite to provide additional strength and contractile force. Glenn Gaudette, PhD, professor of biomedical engineering at WPI, is a co-investigator of the project. Pins and Gaudette have collaborated on several previous microthread related projects. (In a separate project, Gaudette leads a WPI research team that has stripped plant cells from spinach leaves and used the remaining vascular structure as a scaffold to culture beating human heart cells as an alternative method to bioengineer functional cardiac tissue for heart attack patients.)

Looking ahead, following development and analysis of the heart patch funded by the new grant, Pins plans to integrate layers of a 3-D printed substrate etched with channels to allow culture media and eventually blood to flow through and nourish the cells on the threads. "Delivering nutrients to the cells is critical, both for culturing the patch and to sustain it after implantation," Pins said. "So, we have engineered a system to flow blood through the patch, and we also may explore using the decellularized spinach leaves that Glenn's lab is working on as an alternative to perfuse the patch."

###

Media Contact

Alison Duffy
[email protected]
508-831-6656
@WPI

http://www.wpi.edu

Original Source

https://www.wpi.edu/news/nih-funds-wpi-project-develop-heart-muscle-patch-0

Share16Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring Plastid Genome Traits in Saururaceae

October 5, 2025
blank

Exploring Splicing Patterns in Medicinal Rheum Palmatum

October 5, 2025

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

October 5, 2025

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Multimodal Language Models in Chemistry Research

Healthcare Workers’ Views on HIV and Non-Communicable Care

Supporting Caregivers of COPD Patients: Key Insights

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.