• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers assess the power of T-cell immune response to Omicron BA.1 and BA.2

Bioengineer by Bioengineer
April 27, 2022
in Health
Reading Time: 3 mins read
0
Peptides of the Wuhan basic variant and the Delta variant bind well with HLA-DRB1*03:01 (high orange column on the left), while Omicron BA.1 and BA.2 peptides are no longer recognised by this molecule
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scholars from HSE University and the RAS Institute of Bioorganic Chemistry have demonstrated the efficiency of T-cell immune response against the Omicron variant of SARS-CoV-2. In approximately 90% of vaccinated Europeans, T-cell immunity was as effective against Omicron as with other variants. The results of the study were published in PeerJ.

Peptides of the Wuhan basic variant and the Delta variant bind well with HLA-DRB1*03:01 (high orange column on the left), while Omicron BA.1 and BA.2 peptides are no longer recognised by this molecule

Credit: S.Nersisyan et al.

Scholars from HSE University and the RAS Institute of Bioorganic Chemistry have demonstrated the efficiency of T-cell immune response against the Omicron variant of SARS-CoV-2. In approximately 90% of vaccinated Europeans, T-cell immunity was as effective against Omicron as with other variants. The results of the study were published in PeerJ.

The Omicron variant of SARS-CoV-2 caused a new wave of the global pandemic. The new mutations help the virus spread more effectively and avoid antibodies, which is why those who have already had the disease or who have been vaccinated are getting infected more often. At the same time, recent data shows that the severity of the disease in vaccinated patients is significantly lower than in people who have not contacted the virus.

The researchers assume that this can be explained by several factors. First, the Omicron variant is slower at infecting the human cells; second, there is a hypothesis that a lighter course of the disease is related to effective action of T-cell immunity.

To confirm this assumption, a team of researchers from the HSE Faculty of Biology and Biotechnology and the RAS Institute of Bioorganic Chemistry (Stepan Nersisyan, Anton Zhiyanov, Alexey Galatenko, Maxim Shkurnikov, Maria Zakharova, Irina Ishina, Inna Kurbatskaia, Azad Mamedov, Alexander Gabibov, and Alexander Tonevitsky) studied the Omicron variant for mutations that help it avoid the T-cell immune response.

The development of T-cell response starts from the recognition of virus peptides (short fragments of proteins) with the molecules of the human major histocompatibility complex (HLA). The more peptides that are recognised, the faster and more efficient T-cell immunity is. Virus mutations can change such peptides, which is why they can stop being recognised by HLA molecules, and the T-cell response will be less effective.

T-CoV, a bioinformatics algorithm, demonstrated that the Omicron variant avoided none of the HLA molecule variants. But it detected several HLA molecule variants that started to become less effective at recognizing the Omicron’s S-protein. An outstanding discovery was the HLA-DRB1*03:01 variant of the molecule. The most important peptide of the virus managed to avoid it. Interestingly, both types of Omicron, BA.1 and BA.2 (also known as ‘Stealth’), evaded immune response recognition, though this was achieved by completely different mutations.

The bioinformatics calculations were verified experimentally in a laboratory. The researchers proved that there is no binding between Omicron peptides and HLA-DRB1*03:01 molecule, which was expressed in vitro.

The researchers emphasise that the initial peptide from the Wuhan basic variant, as well as Delta peptide, are recognised effectively by this molecule.

The authors emphasise that the detected HLA-DRB1*03:01 variant is present in a big share of the global population: for example, in 8.9% of Europeans.

‘The population diversity of HLA molecules, as well as the specificity of their work do not let the virus avoid the T-cell immune response. But the virus has managed to hide its S-protein from one of the HLA molecules. Importantly, most of COVID-19 vaccines (Sputnik V, Pfizer, Moderna, AstraZeneca and some others) carry specifically this virus protein. This means that people with the variant HLA-DRB1*03:01 (who make up 9% of Europe’s population, for example) vaccinated by S-protein may suffer from a more severe course of the disease caused by the Omicron variant,’ said Alexander Tonevitsky, Dean of the HSE Faculty of Biology and Biotechnology.

 



Journal

PeerJ

DOI

10.7717/peerj.13354

Article Title

Alterations in SARS-CoV-2 Omicron and Delta peptides presentation by HLA molecules

Article Publication Date

27-Apr-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Natural Extracts vs. Chlorhexidine on Streptococcus mutans

November 6, 2025

Nurses and Carers’ Perspectives on CSNAT Intervention

November 6, 2025

Revolutionizing UK Eye Health Research Through Integration of National Data Resources

November 6, 2025

Midlife Cardiovascular Health Decline Associated with Elevated Dementia Risk

November 6, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Phylogenetic Confidence During Pandemics

Natural Extracts vs. Chlorhexidine on Streptococcus mutans

Nurses and Carers’ Perspectives on CSNAT Intervention

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 68 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.