• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers apply computing power to track the spread of cancer

Bioengineer by Bioengineer
June 29, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Princeton researchers have developed a new computational method that increases the ability to track the spread of cancer cells from one part of the body to another.

This migration of cells can lead to metastatic disease, which causes about 90 percent of cancer deaths from solid tumors — masses of cells that grow in organs such as the breast, prostate or colon. Understanding the drivers of metastasis could lead to new treatments aimed at blocking the process of cancer spreading through the body.

"Are there specific changes, or mutations, within these cells that allow them to migrate?" asked Ben Raphael, a professor of computer science at Princeton and the senior author of the new research. "This has been one of the big mysteries."

In a study published in the May issue of Nature Genetics, Raphael and his colleagues presented an algorithm that can track cancer metastasis by integrating DNA sequence data with information on where cells are located in the body. They call it MACHINA, which stands for "metastatic and clonal history integrative analysis."

"Our algorithm enables researchers to infer the past process of metastasis from DNA sequence data obtained at the present time," said Raphael.

The technique yields a clearer picture of cancer migration histories than previous studies that relied on methods based on DNA sequences alone. Some of these studies inferred complex migration patterns that didn't reflect current knowledge of cancer biology.

"The data sets we get these days are very complex, but complex data sets don't always require complex explanations," said Raphael.

By simultaneously tracing cells' mutations and movements, MACHINA found that metastatic disease in some patients could result from fewer cellular migrations than previously thought. For example, in one breast cancer patient, a previously published analysis proposed that metastatic disease resulted from 14 separate migration events, while MACHINA suggested that a single secondary tumor in the lung seeded the remaining metastases through just five cell migrations. In addition to a breast cancer data set, Raphael and his team applied their algorithm to analyze metastasis patterns from patients with melanoma, ovarian and prostate cancers.

Several additional features helped improve MACHINA's accuracy. The algorithm includes a model for the comigration of genetically different cells, based on experimental evidence that tumor cells can travel in clusters to new sites in the body. It also accounts for the uncertainty in DNA data that comes from sequencing mixtures of genetically distinct tumor cells and healthy cells.

This approach overcomes a number of challenges to draw meaningful conclusions from the "difficult to analyze, noisy" data that result from tumor DNA sequencing, said Andrea Sottoriva, the Chris Rokos Fellow in Evolution and Cancer at The Institute of Cancer Research, London. "I predict this new method will be of widespread use to the genomic community and will shed new light on the most deadly phase of cancer evolution," he said.

MACHINA's development paves the way for a broader examination of metastasis patterns in large cohorts of cancer patients, which could reveal key mutations that cause different types of cancer to spread.

Raphael also plans to make the method more powerful by incorporating data from tumor DNA and tumor cells that circulate in the bloodstream, as well as epigenetic changes — reversible chemical modifications of DNA.

"A better algorithm is like a better microscope," said Raphael. "When you look at nature with a magnifying glass, you may miss important details. If you look with a microscope you can see much more."

###

Other study authors were Mohammed El-Kebir, a former post-doctoral research associate in Raphael's group who is now an assistant professor at the University of Illinois at Urbana-Champaign; and Ph.D. student Gryte Satas. The work was supported by the National Institutes of Health and the National Science Foundation.

Media Contact

Molly Sharlach
[email protected]
609-258-6740
@eprinceton

School of Engineering and Applied Science

https://engineering.princeton.edu/news/2018/06/28/researchers-apply-computing-power-track-spread-cancer

Related Journal Article

http://dx.doi.org/10.1038/s41588-018-0106-z

Share12Tweet7Share2ShareShareShare1

Related Posts

Circuit Links Drive and Social Contact to Mate

September 4, 2025

Leadership Coaching Boosts Incident Reporting in Critical Care

September 4, 2025

AI-Driven Virtual Cells: Revolutionizing Cancer Research

September 4, 2025

Weight-Loss Drug Semaglutide Shows Promise in Reducing Cocaine Use in Rats, Paving the Way for Potential Pharmacological Treatment of Human Cocaine Addiction

September 4, 2025
Please login to join discussion

POPULAR NEWS

  • Needlestick Injury Rates in Nurses and Students in Pakistan

    297 shares
    Share 119 Tweet 74
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    118 shares
    Share 47 Tweet 30

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Circuit Links Drive and Social Contact to Mate

Leadership Coaching Boosts Incident Reporting in Critical Care

AI-Driven Virtual Cells: Revolutionizing Cancer Research

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.