• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researchers advocate for single-cell diagnostics for breast cancer

Bioengineer by Bioengineer
October 24, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Women diagnosed with breast cancer may benefit from having the molecular subtype of different cells within their tumors identified, argue two researchers in an opinion article published October 24 in the journal Trends in Cancer. While breast cancer is often treated as a whole, they discuss the growing consensus that cancer cells within a tumor can have multiple origins and respond variably to treatment. The authors advocate for the development of more accurate diagnostic tests to capture molecular irregularities between tumor cells.

"Breast tumors are moving targets because they are really versatile," says Jun-Lin Guan, Francis Brunning Professor and Chair of the Department of Cancer at the University of Cincinnati College of Medicine and member of the Cincinnati Cancer Center and UC Cancer Institute, who co-authored the paper with postdoctoral fellow Syn Kok Yeo. "If you use a treatment that's targeting one subtype, which kills one type of breast cancer, often the other kind will actually expand. That defeats the purpose of treatment."

Breast cancer cells differ by the types of molecular markers, some of which are found on their surface, which physicians can test to understand the characteristics of a patient's cancer and devise the best treatment strategy. For example, women with the HER2+ breast cancer subtype generally have a poorer prognosis than those with the luminal A tumors because of how quickly the cells multiply. Often tumor samples are taken and screened for the most common markers present, but Guan and Yeo's analysis of human and rodent studies raises the possibility that overlapping subtypes are being missed.

They advocate for diagnostic testing to be combined with single-cell technologies, in which individual cells, rather than a collection, are screened for molecular markers. However, as they currently exist, single-cell approaches are expensive and require specialized expertise, so they would not be realistic for regular patient screenings.

"What we're talking about is still not widely used in practice–there's a gap between basic cancer research and the clinics that do the diagnoses," Guan says. "However, single-cell technologies are advancing very quickly, so it's possible that we can see them being used in the near future."

The researchers put forward that the co-existence of distinct breast cancer subtypes within tumors happens because a fraction of breast cancer cells retain many stem cell-like qualities and thus reserve the capability to easily change. This has been observed in human cancer cells and in rodent studies but has yet to be confirmed in patients. Single-cell analysis could assess whether this problem is common or rare in humans.

###

This work was supported by the National Institutes of Health.

Trends in Cancer, Yeo and Guan: "Multiple breast cancer subtypes within a tumor?" http://www.cell.com/trends/cancer/fulltext/S2405-8033(17)30175-9

Trends in Cancer (@trendscancer), published by Cell Press, is a monthly review journal that presents and debates the latest opportunities, impasses, and potential impacts of basic, translational, and clinical sciences but also discusses emergent relevant issues in pharma oncology R&D, technology and innovation, ethics and society, and current cancer policy and funding models. Learn more: http://www.cell.com/trends/cancer/home. To receive Cell Press media alerts, please contact [email protected].

Media Contact

Cara Cavanaugh
[email protected]
617-335-6270
@CellPressNews

http://www.cellpress.com

http://dx.doi.org/10.1016/j.trecan.2017.09.001

Share12Tweet7Share2ShareShareShare1

Related Posts

Scientists Discover “Protective Switches” That Could Enable Transplantation of Damaged Livers

September 23, 2025
blank

Diamond Power: The Ideal Ally for Medical Implants

September 23, 2025

NBL1 Identified as a Critical Factor in Ovarian Cancer Metastasis

September 23, 2025

Connecting Climate Change, Urban Expansion, and Public Health: Insights from Foshan’s Epidemic

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Discover “Protective Switches” That Could Enable Transplantation of Damaged Livers

Diamond Power: The Ideal Ally for Medical Implants

NBL1 Identified as a Critical Factor in Ovarian Cancer Metastasis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.