• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers 3-D print electronics and cells directly on skin

Bioengineer by Bioengineer
April 25, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: McAlpine group, University of Minnesota

In a groundbreaking new study, researchers at the University of Minnesota used a customized, low-cost 3D printer to print electronics on a real hand for the first time. The technology could be used by soldiers on the battlefield to print temporary sensors on their bodies to detect chemical or biological agents or solar cells to charge essential electronics.

Researchers also successfully printed biological cells on the skin wound of a mouse. The technique could lead to new medical treatments for wound healing and direct printing of grafts for skin disorders.

The research study was published today on the inside back cover of the academic journal Advanced Materials.

"We are excited about the potential of this new 3D-printing technology using a portable, lightweight printer costing less than $400," said Michael McAlpine, the study's lead author and the University of Minnesota Benjamin Mayhugh Associate Professor of Mechanical Engineering. "We imagine that a soldier could pull this printer out of a backpack and print a chemical sensor or other electronics they need, directly on the skin. It would be like a 'Swiss Army knife' of the future with everything they need all in one portable 3D printing tool."

Video: https://youtu.be/DTXqUrmr3FQ

One of the key innovations of the new 3D-printing technique is that this printer can adjust to small movements of the body during printing. Temporary markers are placed on the skin and the skin is scanned. The printer uses computer vision to adjust to movements in real-time.

"No matter how hard anyone would try to stay still when using the printer on the skin, a person moves slightly and every hand is different," McAlpine said. "This printer can track the hand using the markers and adjust in real-time to the movements and contours of the hand, so printing of the electronics keeps its circuit shape."

Another unique feature of this 3D-printing technique is that it uses a specialized ink made of silver flakes that can cure and conduct at room temperature. This is different from other 3D-printing inks that need to cure at high temperatures (up to 100 degrees Celsius or 212 degrees Fahrenheit) and would burn the hand.

To remove the electronics, the person can simply peel off the electronic device with tweezers or wash it off with water.

In addition to electronics, the new 3D-printing technique paves the way for many other applications, including printing cells to help those with skin diseases. McAlpine's team partnered with University of Minnesota Department of Pediatrics doctor and medical school Dean Jakub Tolar, a world-renowned expert on treating rare skin disease. The team successfully used a bioink to print cells on a mouse skin wound, which could lead to advanced medical treatments for those with skin diseases.

"I'm fascinated by the idea of printing electronics or cells directly on the skin," McAlpine said. "It is such a simple idea and has unlimited potential for important applications in the future."

Vidoe: https://youtu.be/t5C3OyKY_2g

###

In addition to McAlpine and Tolar, the University of Minnesota team includes Ph.D. students Zhijie Zhu and Xiaoxiao Fan and postdoctoral researcher Shuang-Zhuang Guo from the Department of Mechanical Engineering in the College of Science and Engineering; and research staff Cindy Eide and Tessa Hirdler from the Department of Pediatrics in the Medical School.

This study was funded by grants from the National Institutes of Health and state-funded Regenerative Medicine Minnesota. In addition, the first author of the paper Zhijie Zhu was funded by a University of Minnesota Interdisciplinary Doctoral Fellowship.

To read the full research paper entitled "3D Printed Functional and Biological Materials on Moving Freeform Surfaces," visit the Advanced Materials website.

Media Contact

Rhonda Zurn
[email protected]
612-626-7959
@UMNews

http://www.umn.edu

Original Source

https://twin-cities.umn.edu/news-events/researchers-3d-print-electronics-and-cells-directly-skin http://dx.doi.org/10.1002/adma.201707495

Share12Tweet7Share2ShareShareShare1

Related Posts

Sure! Here’s a rewritten version of the headline for a science magazine post: “Indra’s Internet: Revolutionizing Connectivity with Cutting-Edge Technology” If you’d like it to be more technical or catchy, let me know!

September 17, 2025

Patients in the World’s Poorest Countries Face Triple the Mortality Risk After Abdominal Trauma Surgery

September 17, 2025

Soap Shortage Identified as Top Obstacle to Effective Hand Hygiene in Shared Community Spaces

September 17, 2025

Innovative AI Algorithm Leverages Mammograms to Precisely Predict Cardiovascular Risk in Women

September 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthrough Room-Temperature Terahertz Device Paves the Way for 6G Networks

Lymph Nodes Identified as Crucial Drivers of Successful Cancer Immunotherapy

Sure! Here’s a rewritten version of the headline for a science magazine post: “Indra’s Internet: Revolutionizing Connectivity with Cutting-Edge Technology” If you’d like it to be more technical or catchy, let me know!

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.