• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researcher wins prestigious NSF career award

Bioengineer by Bioengineer
March 22, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Photo by Evan Krape

At a microscopic level, heat flow in many materials occurs through random vibrations, called phonons, that transport energy in a wave-like manner.

Recently, Joe Feser, assistant professor of mechanical engineering at the University of Delaware, received a National Science Foundation Faculty Early Career Development Award to explore the physics of thermal energy transport in materials with embedded nanoparticles. The five-year, $500,000 grant will enable research on how to manipulate heat transfer by phonons, using embedded nanoparticles.

"Phonons interact with any impurities they encounter, including particles, leading to energy scattering that impedes the flow of heat," Feser explains. "Our goal is to leverage new theoretical, computational, and experimental techniques to understand how phonons interact with nanoparticles and to use that information to engineer materials with improved thermal properties."

The scientific findings from the project could lead to nanostructured electronic and optical materials with improved heat dissipation capabilities as well as to thermoelectric materials that directly convert heat to electricity and vice versa with unprecedented efficiency.

Thermoelectric materials, which generate electrical energy from a heat source or remove heat when an electric current is passed through them, are seeing increased use in a variety of power generation and cooling applications.

One particular advantage of these materials is that they can convert waste heat — from, for example, solar radiation, automotive exhaust, and industrial processes — to electricity.

Feser will explores two scientific hypotheses in the NSF project.

"The first is that a phenomenon known as Mie scattering is far more important to transport than previously recognized, and this changes the geometric and materials design rules for thermal control of nanocomposites," he says.

"We're also keen to understand whether localization governs the physics of long-wavelength phonons important to thermal transport in dense nanoparticle-in-alloy materials, and whether that can be exploited to create materials with extraordinary insulating properties."

In addition to research, the project includes two educational outreach programs, one for at-risk K-8 children in Wilmington, Delaware, and the other targeted to industrial users with the goal of transferring ultrafast thermal measurement technology to nonacademic end users.

The grant was awarded through NSF's Division of Chemical, Bioengineering, Environmental, and Transport Systems.

###

About the researcher

Joe Feser received his bachelor's and master's degrees in mechanical engineering at the University of Delaware in 2003 and 2005, respectively, and his doctorate from the University of California, Berkeley, in 2010. He served as a postdoctoral researcher at the University of Illinois, Urbana-Champaign from 2011-13 and then joined the UD faculty.

Feser leads the Microscale Thermal Transport Lab (MuTT Lab) at UD, which focuses on developing tools to study microscale thermal transport phenomena, new materials that push the limits of achievable transport properties, and new device technologies based on these materials.

Application areas include the cooling of electronic devices, energy efficiency, thermoelectric energy conversion, and next-generation magnetic recording devices.

Media Contact

Peter Bothum
[email protected]
302-831-1418
@UDResearch

http://www.udel.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

How Placental Research Could Revolutionize Our Understanding of Autism and Human Brain Evolution

September 16, 2025
blank

Pueraria lobata and Puerarin Boost Dopamine Activity

September 16, 2025

Study Identifies Population Aging as Key Driver of Musculoskeletal Disorders

September 16, 2025

Charting the Universe: Faster Mapping with Unmatched Precision

September 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Placental Research Could Revolutionize Our Understanding of Autism and Human Brain Evolution

Pueraria lobata and Puerarin Boost Dopamine Activity

Study Identifies Population Aging as Key Driver of Musculoskeletal Disorders

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.