• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researcher takes another step toward discovering how a brain molecule could halt MS

Bioengineer by Bioengineer
February 1, 2023
in Biology
Reading Time: 2 mins read
0
Researcher takes another step toward discovering how a brain molecule could halt MS
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A University of Alberta researcher is one step closer to demonstrating the potential of a brain molecule called fractalkine to halt and even reverse the effects of multiple sclerosis and other neurodegenerative diseases. 

Researcher takes another step toward discovering how a brain molecule could halt MS

Credit: University of Alberta

A University of Alberta researcher is one step closer to demonstrating the potential of a brain molecule called fractalkine to halt and even reverse the effects of multiple sclerosis and other neurodegenerative diseases. 

Multiple sclerosis is an autoimmune disease in which the myelin, or fatty lining of nerve cells, is eroded, leading to nerve damage and slower signalling between the brain and the body. MS symptoms range from blurred vision to complete paralysis, and while there are treatments, the causes are not fully understood and nothing exists to reverse the disease process. More than 90,000 Canadians live with MS, according to the MS Society.

In new research published in Stem Cell Reports, Anastassia Voronova, an assistant professor and Canada Research Chair in Neural Stem Cell Biology, injected fractalkine into mice with chemically induced MS.

She found the treatment increased the number of new oligodendrocytes — vital brain and spinal cord cells that produce myelin in both embryonic and adult brains — which are damaged during the MS autoimmune attack. 

“If we can replace those lost or damaged oligodendrocytes, then they could make new myelin and it is believed that would halt the disease progression, or maybe even reverse some of the symptoms,” Voronova says. “That’s the Holy Grail in the research community and something that we’re very passionate about.”

Voronova’s earlier research tested the safety and efficacy of fractalkine in normal mice and found similar beneficial effects. Other researchers have demonstrated that fractalkine may provide protection for nerves in mouse models before the disease is induced, but this is the first time it has been tested on animals that already have the disease. 

Voronova and her team observed new oligodendrocytes, as well as reactivated progenitor cells that can regenerate oligodendrocytes, in the brains of the treated animals. Remyelination occurred in both the white and grey matter. The researchers also observed a reduction in inflammation, part of the damage caused by the immune system. Next steps for the treatment include testing it in other diseased mouse models, including those with neurodegenerative diseases other than MS. 



Journal

Stem Cell Reports

DOI

10.1016/j.stemcr.2022.12.001

Article Title

Fractalkine enhances oligodendrocyte regeneration and remyelination in a demyelination mouse model

Article Publication Date

5-Jan-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Extraction Methods Impact Idesia Polycarpa Oil Quality

September 13, 2025

Evaluating Rohu Fry Transport: Key Water Quality Insights

September 13, 2025

Unveiling Arabidopsis Aminotransferases’ Multi-Substrate Specificity

September 13, 2025

Evaluating Energy Digestibility in Quail Feed Ingredients

September 12, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

Estimating Rice Canopy LAI Non-Destructively Across Varieties

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.