• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, January 16, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researcher invents an easy-to-use technique to measure the hydrophobicity of micro- and nanoparticle

Bioengineer by Bioengineer
October 17, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Copyright American Chemical Society


The scientific and industrial communities who work with micro- and nanoparticles continue to labor with the challenge of effective particle dispersion. Most particles that disperse in liquids aggregate rapidly, and eventually precipitate, thereby separating from the liquid phase. While it is commonly accepted that the hydrophobicity of particles– how quickly water repels off a surface–determines their dispersion and aggregation potential, there has been no easy-to-use method to quantitatively determine the hydrophobicity of these tiny particles.

Yi Zuo, University of Hawaii at Manoa College of Engineering and pediatrics professor, has invented a groundbreaking method that allows for easy determination of the surface free energy of particles as a quantitative measure of particle hydrophobicity. The research “An Optical Method for Quantitatively Determining the Surface Free Energy of Micro- and Nanoparticles,” was published in the October 2019 issue of the scientific journal Analytical Chemistry and showcased on the cover.

“The major advantage of this method resides in its simplicity,” said Zuo. “For the first time, the scientific and industrial community will have access to an inexpensive and easy-to-use method for quantitatively determining the hydrophobicity of particulate matter. Our method relies on a novel measuring principle and common laboratory procedures and equipment such as pipetting and visible-light spectroscopy.”

Zuo has demonstrated the feasibility of this method in determining the surface free energy of various micro- and nanoparticles, such as carbon nanotubes, graphene and polystyrene particles.

The study may have a far-reaching implication for many scientific and industrial applications and disciplines that involve particulate matter. “For example, our method can be used to quantify the hydrophobicity of nanoparticles, which is of crucial importance for the study of potential health risks and biomedical applications of nanomaterials.” Zuo said. “It may also find application in microbial science because the surface free energy of bacterial cells determines the cellular adhesion and proliferation in biofilms.”

###

This research was supported by a National Science Foundation award (CBET-1604119). With this grant, as well as with support from the Hawaii Community Foundation, Zuo is studying the potential health effects of nanomaterials and their biomedical applications using novel experimental techniques developed in Zuo’s Laboratory of Biocolloids and Biointerfaces.

Media Contact
Yi Zuo
[email protected]

Tags: Nanotechnology/MicromachinesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026
blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    147 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    76 shares
    Share 30 Tweet 19
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Carbon Fiber Boosts Zirconium Diboride in 3D Printing

Revolutionary Support Program for Families of Cancer Patients

Spatial Multiomics Uncovers Immune Dysfunction in Parkinson’s, IBD

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.