• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Researcher gets $485,263 grant to study how to control materials moving through tiny spaces

Bioengineer by Bioengineer
November 19, 2018
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Georgia State University

ATLANTA–Dr. Gangli Wang, professor of chemistry at Georgia State University, has received a three-year, $485,263 federal grant to study how nanostructured materials, or materials with hollow structures on the nanometer scale, affect how other substances pass through them.

The grant from the U.S. Department of Energy's Office of Basic Energy Sciences will support fundamental research that could advance applications such as desalination, or water purification, and energy harvesting, or power generation.

The researchers will study the movement of substances through a single or array of apertures in nanoscale dimensions, or one billionth of a meter. They will perform experiments and computer simulations to vary the aperture geometry and surface charges to affect the behavior of materials that come in contact with it.

"Nanostructured materials differ from bulk scale materials because their dimension confinements can result in physical interactions between the substrate, or container, and the solution. Changes in local geometry and surface charge can significantly impact the material's chemical and physical properties, giving rise to new and unexplored applications," said Maksim Kvetny, a Ph.D. student in Wang's electrochemistry lab. "We've found that we can selectively move one ion species preferentially over others by tuning nanostructures, which has a lot of implications. If you were to take salt water and have a cleverly designed device, you may be able to separate the salts out more efficiently. This may give us another avenue towards more energy-efficient applications."

Water desalination technology, the process that removes excess salt and other minerals from water to obtain fresh water suitable for consumption, is important because of the increasing global demand for fresh water, environmental concerns to recycle or reuse industrial waste of brackish water and needs in resource-limited conditions. Desalination is performed through techniques that require significant amounts of energy, with a key step using permeable membranes that can be improved.

This research could also be used to extract energy more efficiently from unconventional sources such as estuaries where sea/brackish water and river/fresh water meet, said Warren Brown, a recent Ph.D. graduate from Wang's lab. This energy-harvesting strategy is basically the reverse process of desalination.

The study will provide fundamental insights on how to design and improve the efficacy and efficiency of these applications.

###

Media Contact

LaTina Emerson
[email protected]
404-413-1353
@GSU_News

http://www.gsu.edu

Original Source

https://news.gsu.edu/2018/11/19/researcher-gets-485263-grant-to-study-how-to-control-materials-moving-through-tiny-spaces/?utm_source=press-release&utm_medium=media&utm_campaign=materials

Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Context and Experience on Nurses’ Medications

December 19, 2025

Measles Vaccine Uptake in Young Children in Ethiopia

December 19, 2025

Exploring Digitalization in German Palliative Care

December 19, 2025

Embracing Death: Geriatric Patients’ Perspectives Explored

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Context and Experience on Nurses’ Medications

Measles Vaccine Uptake in Young Children in Ethiopia

Exploring Digitalization in German Palliative Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.