• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research to explore the development of deadly brain tumors

Bioengineer by Bioengineer
October 16, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Plymouth

Glioblastoma is the most common of malign brain tumours in adults, and it currently has no cure.

Now a research team led by Dr Claudia Barros, from the Plymouth University Peninsula Schools of Medicine and Dentistry and its Brain Tumour Research-funded Centre of Excellence, has secured funding from the Brain Research Trust, which will help to expose novel molecules and their modes of action responsible for the initiation and growth of the disease.

With the collaboration of colleagues from Derriford Hospital and the Medical Research Council Centre for Regenerative Medicine, Edinburgh, Dr Barros will investigate the cellular changes leading to the development of glioblastoma brain tumours – making vital steps in the bid to understand how they are formed and why they are prone to returning.

Using a brain tumour model in Drosophila fruit flies – which were also used by the winners of this year's Nobel Prize for Medicine – the researchers recapitulate hallmarks of human brain cancer stem cell and tumour development. In this model, Dr Barros's team visualises cancer stem cells at the time they originate inside intact brain, and can identify early cellular and molecular changes.

In this new project, the team is set to investigate comparable changes in cells from glioblastoma patients.

Understanding the origin, driver mutations and properties of brain cancer stem cells is essential to the development of new and more effective treatments targeting these cells. Yet despite ongoing research efforts from teams around the world, Dr Barros explains, knowledge in this area is still limited.

"We hope to contribute to a major current area in brain tumour research that underlies the questions of 'How do brain tumours form, and why do they frequently re-appear after treatment?'" she said.

"Despite efforts by researchers around the world, the basic knowledge of the complex molecular and cellular mechanisms involved is still limited. This has hampered the development of effective targeted therapies.

"The new factors and mechanisms we hope to reveal have the potential to become novel targets for the much needed better therapies against these deadly brain tumours. What we will learn may not only apply to glioblastoma but also to the development of other types of brain tumours, including those of low grade."

Caroline Blakely, Chief Executive Officer of the Brain Research Trust, said: "We are delighted to have been able to support this important work by Dr Barros.

"Neuro-oncology is one of our three priority research themes – reflecting a large unmet patient need coupled with insufficient current research investment. We want to improve the outlook for people with brain tumours by funding research that takes forward our understanding of the mechanisms underlying tumour development and helps develop better ways to diagnose and treat these tumours.

"Glioblastoma is the most common primary malignant brain tumour in adults and is particularly devastating. There is no cure and most patients die within a year of diagnosis. We believe that Dr Barros' work will help change this; by giving an insight into new and more effective ways to treat glioblastoma. We look forward to following her progress."

###

Media Contact

Amy McSweeny
[email protected]
175-258-8018
@PlymUni

http://www.plymouth.ac.uk

Share13Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.