• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Research team at World Institute of Kimchi discovers lactic acid bacteria strains with high virus resistance from kimchi

Bioengineer by Bioengineer
November 1, 2023
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the World Institute of Kimchi have isolated lactic acid bacteria (LAB) strains with high levels of resistance to phages from kimchi fermented at low temperatures for a long period of time. They have also identified the defense mechanism of the LAB strains against phages, viruses that infect and replicate within bacteria.

Kimchi lactic acid bacteria with a high level of resistance to phage

Credit: The World Institute of Kimchi

Researchers at the World Institute of Kimchi have isolated lactic acid bacteria (LAB) strains with high levels of resistance to phages from kimchi fermented at low temperatures for a long period of time. They have also identified the defense mechanism of the LAB strains against phages, viruses that infect and replicate within bacteria.

Kimchi, a traditional Korean food, is a lactic acid-fermented vegetable product. Unlike fermented dairy products, which are produced under a sterilized-closed fermentation system, kimchi is produced through spontaneous fermentation initiated by various microorganisms present in the raw materials under a non-sterilized-open fermentation system. Thus, various LAB can be involved in kimchi fermentation, and the diversity of the dominant LAB and the periods during which they are dominant differ depending on the environment.

To identify the genetic traits of kimchi LAB in long-term fermented kimchi stored at low temperature, researchers at the World Institute of Kimchi collected 34 samples of kimchi fermented for more than 6 months at low temperatures of -2 to 10℃ from all over South Korea. In more than 88% of the collected kimchi samples, a specific LAB strain, Pediococcus inopinatus, was found to be the dominant species. Through whole-genome sequencing analysis, the researchers found that P. inopinatus has a very well-developed clustered regularly interspaced short palindromic repeat (CRISPR). CRISPR is a prokaryotic adaptive immune system composed of a combination of several genes depending on the LAB strain.

Specifically, the P. inopinatus strains possess additional copies of the csa3 gene, the gene coding for the transcription factors for the cas genes, compared to other LAB strains. Also, due to the active expression of cas genes, P. inopinatus strains store much more genetic information about phages. Therefore, after the first phage infection, P. inopinatus will be more effective in preventing subsequent infection with similar phage. The kimchi industry has been using kimchi LAB as a starter for the production of standardized kimchi with better sensory qualities. Just as humanity is threatened by the COVID-19 virus, these starters are also at risk of infection from phages. Therefore, the development of phage-resistant LAB strains is necessary. Additionally, among the kimchi LAB reported in this study, one LAB strain had a gene sequence that could play an immune role not only against phages but also against mammalian viruses.

Dr. Hae Choon Chang, President of the World Institute of Kimchi and the corresponding author of this study, said, “P. inopinatus possesses a unique, well-developed CRISPR system that can defend against a variety of viral invasions.” She also stated, “We are planning to study the antiviral activity and analyzing the immune spectrum of P. inopinatus, and we expect that the excellent antiviral ability of these kimchi LAB strains can be used not only in food but also in the pharmaceutical industry.”

The results of this study were published in the online edition of the September 2023 issue of Food Microbiology, an international journal dealing with all aspects of the microbiology of foods.

 

 

 

※ Paper title: Pediococcus inopinatus with a well-developed CRISPR-Cas system dominates in long-term fermented kimchi, Mukeunji (IF 5.3)

– Authors: (Corresponding author) Hae Choon Chang, PhD (first author) So Yeong Mun, PhD and Wooje Lee, PhD



Journal

Food Microbiology

DOI

10.1016/j.fm.2023.104385

Article Title

Pediococcus inopinatus with a well-developed CRISPR-Cas system dominates in long-term fermented kimchi, Mukeunji

Article Publication Date

13-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Comparing Titanium and PEEK Intervertebral Fusion Techniques

September 1, 2025

Advancements in EEG-Based Brain-Computer Interfaces in Medicine

September 1, 2025

Sustainable Nursing Leadership: Harnessing Knowledge for Change

September 1, 2025

Melatonin Shields Ovaries from LPS-Induced Damage

September 1, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Comparing Titanium and PEEK Intervertebral Fusion Techniques

Advancements in EEG-Based Brain-Computer Interfaces in Medicine

New Insights into Pediatric Hypertriglyceridemia Causes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.