• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Research targets long-term brain deficits in cardiac arrest survivors

Bioengineer by Bioengineer
July 24, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New Orleans, LA – Research conducted by Jason Middleton, PhD, Assistant Professor of Cell Biology and Anatomy, and Neuroscience at LSU Health New Orleans School of Medicine, and colleagues may lead to a treatment to prevent long-term sensory problems by restoring normal brain function in survivors of cardiac arrest. The study, done in a rodent model and using modeling data, is published online in eNeuro, an open-access journal of the Society for Neuroscience, and is available here.

Cardiac arrest is a common cause of brain injury. When the brain is deprived of oxygen, not only can cells die, but surviving cells can suffer damage resulting in long-term sensory dysfuntion in the cortex. The cerebral cortex is the outer covering of the brain — the gray matter that covers hemispheres of the brain like a helmet. This is the part of the brain that receives sensory input, such as vision, hearing and touch, and areas of the cortex are also involved in more complex functions, such as memory, language, creativity, judgement and emotion.

The research team studied the long-term impact of cardiac arrest on the cortex in a rat model. They measured sensory response and found that after oxygen deprivation, the sensory circuits in the cortex are less responsive with behavioral deficits. Their data suggest that cardiac arrest and resuscitation permanently affect cortical circuit function in survivors.

"Our work characterizes the changes that occur in the sensory cortex after a form of global hypoxic injury in juvenile rats," notes Dr. Middleton. "The injury did not result in widespread cell death as occurs in other forms of acute, focal ischemic injury; the deficits uncovered were subtler and reflected decreased ability of the cortex to discriminate sensory stimuli. We used computer modeling of the neural network to implicate changes in the balance of excitatory and inhibitory synaptic transmission in the cortex."

According to the American Heart Association, more than 350,000 Americans experienced out-of-hospital cardiac arrest last year. With bystander CPR, 46.1% survived.

"These findings lay the groundwork for further studies to pinpoint therapeutic targets to restore excitatory/inhibitory balance in the injured brain and mitigate sensory deficits later in life," concludes Middleton.

###

The research team also included Drs. Daniel J. Simons, Robert S. B. Clark and Patrick M. Kochanek from the University of Pittsburgh School of Medicine and Drs. Jennifer W. Simmons and Michael Shoykhet from Washington University School of Medicine in St. Louis.

The research was supported by NIH Grants K08 NS-082362, 75 NS19950, HD045968, the Pediatric Critical Care Scientist Development Program (5K12-HD04739-8, University of Utah), Children's Discovery Institute of the St. Louis Children's Hospital, McDonnell Center for Systems Neuroscience and Child Health Research Center of Excellence in Developmental Biology at Washington University School of Medicine (K12-HD01487).

LSU Health Sciences Center New Orleans educates Louisiana's health care professionals. The state's health sciences university leader, LSU Health New Orleans includes a School of Medicine, the state's only School of Dentistry, Louisiana's only public School of Public Health, and Schools of Allied Health Professions, Nursing, and Graduate Studies. LSUHSC faculty take care of patients in public and private hospitals and clinics throughout the region. In the vanguard of biosciences research in a number of areas in a worldwide arena, the LSUHSC research enterprise generates jobs and enormous economic impact. LSUHSC faculty have made lifesaving discoveries and continue to work to prevent, advance treatment, or cure disease. To learn more, visit http://www.lsuhsc.edu, http://www.twitter.com/LSUHealthNO or http://www.facebook.com/LSUHSC.

Media Contact

Leslie Capo
[email protected]
504-568-4806
@LSUHealthNO

http://www.lsuhsc.edu/

http://lsuh.sc/nr?a=20

Related Journal Article

http://dx.doi.org/10.1523/ENEURO.0319-16.2017

Share12Tweet7Share2ShareShareShare1

Related Posts

Epstein-Barr Virus Protein EBNA1 Drives Oncogene Activation in Cervical Cancer Cells

Epstein-Barr Virus Protein EBNA1 Drives Oncogene Activation in Cervical Cancer Cells

August 22, 2025
APS PRESS Unveils Third Edition of Cotton Industry’s Premier Diagnostic Reference

APS PRESS Unveils Third Edition of Cotton Industry’s Premier Diagnostic Reference

August 22, 2025

Metabolic Modeling Reveals Yeast Diversity for Enhanced Industrial Biotechnology

August 22, 2025

Mechanisms of Amino Acid Transport in Plants Unveiled

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Whole-Body Vibration Training Reduces Body Mass: Review

Study Finds Speed Isn’t Everything in Covalent Inhibitor Drug Development

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.