• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Research supports role of supernovas in measuring pace at which the universe expands

Bioengineer by Bioengineer
January 6, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of research scientists led by David Cinabro, professor of physics and astronomy in the College of Liberal Arts and Sciences at Wayne State University, recently published a paper marking the importance of Type Ia Supernovas in measuring the pace at which the universe expands. Type Ia Supernovas are among the very brightest cosmic explosions visible, signaling the death of stars, and their importance to cosmology cannot be understated.

The findings of the study – published in the Monthly Notices of the Royal Astronomical Society by Cinabro's team at Wayne State University, Daniel Scolnic, a postdoctoral scholar at the University of Chicago's Kavli Institute for Cosmological Physics, Rick Kessler, a senior researcher at the Kavli Institute, and undergraduate students Ashley Li and Jake Miller – support a theory that the expansion of the universe is accelerating and is attributable to a mysterious force known as dark energy – an unknown form of energy hypothesized to permeate all of space. The findings counter recent headlines that Type Ia Supernovae cannot be used as an accurate measure for the expansion of the universe.

"Observations just before the turn of the century provided the first clear evidence of an accelerated expansion of the universe," said Cinabro. "Subsequent observations combined with the clustering of galaxies and the cosmic microwave background further point towards this acceleration being caused by a mysterious anti-gravity-like force called Dark Energy."

According to Cinabro, these observations depend on the assumption that the light output of Type Ia Supernovas relatively near to the earth can be described in the same way as those that are much further away. The observations of two distinct types of Type Ia Supernovas with different amounts of light output by Peter Milne of the University of Arizona and his collaborators in 2015 called this underpinning assumption into question.

Checking this observation with publicly available observations of Type Ia Supernova is not so easy, commented Cinabro.

"Milne and his collaborators observed two peaks in the brightness of Type Ia Supernova in the ultraviolet part of the light spectrum using instruments on the Swift satellite," said Cinabro. "Most of the existing Type Ia Supernova data have been observed with ground-based telescopes which have difficulty viewing in ultraviolet light due to the earth's atmosphere, which would fuzzily smear together two ultraviolet peaks in the light from nearby Type Ia Supernova as claimed by Milne and collaborators."

Based on the researcher's observations, more distant supernova have their ultraviolet light red-shifted – or stretched into lower frequencies or longer wavelengths – into the visible. The high quality visible light observations of Type Ia Supernovas from the SuperNova Legacy Survey (SNLS) and the Sloan Digital Sky Survey (SDSS) for more distant explosions do not exhibit the two peak structure expected if the earlier results were correct.

"Rather we observe a single, broad distribution of Type Ia Supernova brightness in the ultraviolet agreeing with earlier assumptions and existing models of Type Ia Supernova explosions," concluded Cinabro.

###

About Wayne State University

Wayne State University is one of the nation's pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world. For more information about research at Wayne State University, visit research.wayne.edu.

Research Background

"Search for Type Ia Supernova NUV-Optical Subclasses," by David Cinabro and Jake Miller (Wayne State University); and Daniel Scolnic and Ashley Li (Kavli Institute for Cosmological Physics at the University of Chicago); and Richard Kessler (Kavli Institute for Cosmological Physics at University of Chicago and the Department of Astronomy and Astrophysics at the University of Chicago). Monthly Notices of the Royal Astronomical Society, November 2016. DOI: 10.1093/mnras/stw3109

Funding for this research was provided by the Kavli Institute for Cosmological Physics at the University of Chicago, Kavli Foundation, Fred Kavli, Space Telescope Science Institute, and National Aeronautics and Space Administration.

Media Contact

Julie O'Connor
[email protected]
313-577-8845

http://www.research.wayne.edu/about/index.php

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

How Does Cellular Activity in Early Life Impact Cancer and Aging?

October 2, 2025

NJIT Study Reveals Vision Therapy Restores Clarity from Concussion-Induced Double and Blurred Vision

October 2, 2025

Pseudokinases Drive Peptide Cyclization via Thioether Crosslinking

October 2, 2025

Ancient Ear Bones Rewrite the Story of Freshwater Fish Evolution

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    80 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Does Cellular Activity in Early Life Impact Cancer and Aging?

NJIT Study Reveals Vision Therapy Restores Clarity from Concussion-Induced Double and Blurred Vision

Pseudokinases Drive Peptide Cyclization via Thioether Crosslinking

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.