• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Research reveals strategy to potentially treat juvenile Batten disease

Bioengineer.org by Bioengineer.org
January 21, 2018
in Headlines, Health, Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: M. Sardiello.

Researchers at Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital and King's College London have discovered a treatment that improves the neurological symptoms in a mouse model of juvenile Batten disease. This discovery brings hope to patients and families affected by the disease that a treatment might be available in the future. The study appears in Nature Communications.

"Patients with juvenile Batten disease are born healthy and reach the expected developmental milestones of the first 4 to 6 years of age," said senior author Dr. Marco Sardiello, assistant professor of molecular and human genetics at Baylor. "Then, these children progressively regress their developmental achievements; they gradually lose their vision and develop intellectual and motor disabilities, changes in behavior and speech difficulties. Most people with this condition live into their 20s or 30s. This inherited, rare disease has no cure or treatment other than palliative care."

"As we started this project, patients and families affected by this condition visited us in the laboratory," said first author Dr. Michela Palmieri, who was a postdoctoral fellow in the Sardiello lab during this project and currently is at the San Raffaele Scientific Institute in Milan, Italy. "We were deeply affected by our interactions with the patients and their families and this further motivated us to pursue this research with the hope that maybe one day it will lead to a treatment that will improve the lives of people affected by this condition."

Juvenile Batten disease, a problem with cellular waste management

Like a large dynamic city, a cell carries out many activities that generate waste. Waste needs to be disposed of properly in order for the city to continue its activities without interruption. If waste management fails, waste progressively accumulates and eventually leads to interruption and paralysis of the activities of the city. Something similar happens in cells when cellular waste is not discarded.

The lysosomes are the structures in charge of clearing the waste produced by the cell's regular functions. Lysosomes are sacs inside all cells containing enzymes that degrade cellular waste into its constituent components, which the cell can recycle or discard. When lysosomes fail and cellular waste accumulates, disease follows. Although all types of cells can be affected by defects in lysosomal waste processing and cellular waste accumulation, brain cells – neurons – are particularly susceptible.

"In juvenile Batten disease, one of nearly 50 human lysosomal storage disorders, the function of brain cells is progressively affected by the accumulation of cellular waste," Sardiello said. "This accumulation leads to perturbation of many cellular processes, cell death and progressive regression of motor, physical and intellectual abilities."

A novel approach to finding a treatment

"A few years back we discovered a protein in cells called TFEB, a master transcription factor that stimulates the cell to produce more lysosomes and degrade cellular waste more effectively," said Sardiello. "So we thought about counteracting the accumulation of cellular waste in Batten disease by acting on TFEB."

"We and others had found that enhancing the activity of TFEB genetically can help counter the accumulation of cellular waste in different diseases," Sardiello said. "What was missing was a way to activate TFEB with a drug that in the future could be put in a pill to treat the condition. We focused on investigating how to activate TFEB pharmacologically."

"We discovered that TFEB is under the control of another molecule called Akt, which is a kinase, a protein that can modify other proteins," said Palmieri. "Akt has been studied in detail. There are drugs available that can modulate the activity of Akt."

The researchers discovered that Akt modifies TFEB by adding a chemical group, a phosphate, to it. This chemical modification inactivates TFEB.

"We wanted to inhibit Akt to keep TFEB more active," said Palmieri. "We discovered that the sugar trehalose is able to do this job."

Testing a treatment for juvenile Batten disease in a mouse model of the condition

The scientists tested the effect of trehalose in a mouse model of juvenile Batten disease.

"We dissolved trehalose in drinking water and gave it to mice that model juvenile Batten disease," said Sardiello. "Then, over time we examined the mice's brain cells under the microscope. We found that the continuous administration of trehalose inhibits Akt and activates TFEB in the brains of the mice. More active TFEB meant more lysosomes in the brain and increased lysosomal activity, followed by decreased accumulation of the storage material and reduced tissue inflammation, which is one of the main features of this disease in people, and reduced neurodegeneration. These changes resulted in the mice living significantly longer. This is a good start toward finding a treatment for people with this disease."

"We are very excited that these findings put research a step closer to understanding the mechanisms that underlie human lysosomal storage diseases," said Palmieri. "We hope that our research will help us design treatments to counteract this and other human diseases with a pathological storage component, such as Alzheimer's, Huntington's and Parkinson's diseases, and hopefully ameliorate the symptoms or reduce the progression of the disease for those affected."

###

The following researchers also contributed to this work: Rituraj Pal, Hemanth R. Nelvagal, Parisa Lotfi, Gary R. Stinnett, Michelle L. Seymour, Arindam Chaudhury, Lakshya Bajaj, Vitaliy V. Bondar, Laura Bremner, Usama Saleem, Dennis Y. Tse, Deepthi Sanagasetti, Samuel M. Wu, Joel R. Neilson, Fred A. Pereira, Robia G. Pautler, George G. Rodney and Jonathan D. Cooper.

This work was supported by NIH grant NS079618, grants from the Beyond Batten Disease Foundation, March of Dimes Foundation grant #5-FY12-114, and a King's College London Graduate School International Studentship. This project was also supported in part by the Hamill Foundation and by IDDRC grant number 1U54 HD083092 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (Cores: Mouse Neurobehavior, RNA In Situ Hybridization, and Integrated Microscopy).

More information:

Visit here for more information about juvenile Batten disease.

Dr. Sardiello explains juvenile Batten disease and his research in this video.

Palmieri, M., et al., "mTORC1-independent TFEB activation via Akt inhibition promotes cellular clearance in neurodegenerative storage diseases," Nature Communications, February 2017, DOI: 10.1038/NCOMMS14338.

Media Contact

Graciela Gutierrez
[email protected]
713-798-4710
@bcmhouston

https://www.bcm.edu/news

Share12Tweet7Share2ShareShareShare1

Related Posts

Boosting Xanthan Gum Production with Essential Oil By-products

Boosting Xanthan Gum Production with Essential Oil By-products

September 13, 2025
Groundwater Pesticide Contamination: Challenges and Solutions

Groundwater Pesticide Contamination: Challenges and Solutions

September 13, 2025

FBXW11 Ubiquitinates YB1, Suppressing Hepatocarcinoma Growth

September 13, 2025

Interpretable Deep Learning for Anticancer Peptide Prediction

September 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Xanthan Gum Production with Essential Oil By-products

Groundwater Pesticide Contamination: Challenges and Solutions

FBXW11 Ubiquitinates YB1, Suppressing Hepatocarcinoma Growth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.