• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Science

Research reveals insight into how lung cancer spreads

Bioengineer by Bioengineer
November 21, 2016
in Science
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: MD Anderson Cancer Center

A cellular component known as the Golgi apparatus may play a role in how lung cancer metastasizes, according to researchers at The University of Texas MD Anderson Cancer Center whose findings were reported in the Nov. 21 online issue of the Journal of Clinical Investigation.

The Golgi apparatus, often referred to as a cellular "post office" for its ability to package proteins into vesicles for transportation to other sites within or outside the cell, may offer a new therapeutic approach for preventing metastasis. Think of vesicles as miniature mail trucks composed of a fatty shell filled with secretory liquids that travel from the Golgi to destinations within the cell where their contents are put to use. The Golgi can appear as a compacted membranous "stack" near the cell's nucleus or as a dispersed system of interconnected membranes. Vesicles can "bud" from the Golgi in either form.

"Our findings show that certain proteins in the Golgi that control Golgi compaction may actually promote vesicle budding and transport and enhance the tumor cell's ability to metastasize" said Jonathan Kurie, M.D., professor of Thoracic Head and Neck Medical Oncology. "These findings highlight the potential utility of targeting certain cellular processes in the Golgi."

According to Kurie, tumor cells gain their metastatic ability through a Golgi-related process driving the budding and transport of secretory vesicles. Unknown before this study was whether Golgi compaction was responsible for vesicular trafficking leading to metastasis. This study shows that Golgi compaction is associated with EMT or epithelial-to-mesenchymal transition, a process that allows a cell to detach and move away from its neighbors during wound healing and other normal processes and is thought to play a role in cancer cell migration.

Using lung adenocarcinoma cell lines isolated from mice and patients, Kurie's team found that EMT depends on a Golgi protein called PAQR11 for successful tumor cell migration and metastasis in lung cancers.

"We concluded that, through PAQR11, tumor cells can hijack a normal Golgi compaction process in order to gain metastatic ability," said Kurie.

###

MD Anderson study team participants included Xiaochao Tan, Ph.D.; Priyam Banerjee; Ph.D., Hou-Fu Guo, Ph.D.; Daniela Pankova, Ph.D.; Xin Liu, Ph.D.;Yongming Xue, Jonathon Roybal and Don Gibbons, M.D., all of Thoracic Head and Neck Medical Oncology; Tomasz Zal, Ph.D., Immunology; and Chad Creighton, Ph.D., Bioinformatics and Computational Biology. Other participating institutions include the University of Michigan, Ann Arbor, Mich.; Ewha Woman's University School of Medicine, Seoul, South Korea; University of York, York, U.K.; Harbin Medical University Cancer Hospital, Harbin, China; University of Houston and Baylor College of Medicine, Houston.

The study was funded by the National Institutes of Health (R01CA181184, R01CA125123, GM087364, GM105920, GM112786P30, EY007551, K08CA151661, NRF-2010-0027945, CA015672, 1S10OD012304-01, and 1S10RR09552-01), the American Cancer Society (RGS-09-278-01-CSM), the Cancer Prevention Research Institute of Texas (RP120713), and MCubed and the Fastforward Protein Folding Disease Initiative at the University of Michigan.

Media Contact

Ron Gilmore
[email protected]
713-745-1898
@mdandersonnews

http://www.mdanderson.org

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Five or more hours of smartphone usage per day may increase obesity

July 25, 2019
IMAGE

NASA’s terra satellite finds tropical storm 07W’s strength on the side

July 25, 2019

NASA finds one burst of energy in weakening Depression Dalila

July 25, 2019

Researcher’s innovative flood mapping helps water and emergency management officials

July 25, 2019
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1271 shares
    Share 508 Tweet 317
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    304 shares
    Share 122 Tweet 76
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    137 shares
    Share 55 Tweet 34
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    130 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Distinct Risk Profiles Identified for Suicide Attempts Versus Completed Suicide

New Study Finds Babies Born 8-10 Weeks Premature Can Safely Be Milk Fed Without Gut Complications

Wayne State University Appoints New Director for Institute of Gerontology, Announces Vice President for Research & Innovation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.